
Lifting Automorphisms of K0(Mn−1(C)⊗On)

Simon Venter

Abstract

K-theory induces a homomorphism from the automorphism group Aut(A) of an algebra

A to the automorphism group Aut(K0(A)) by sending an algebra automorphism ϕ of A to

its induced automorphism ϕ∗ of K0(A). This homomorphism is known to be surjective for

special kinds of C∗-algebras (like Mn−1(C) ⊗ On, where On is the n-th Cuntz algebra), but

not by explicit construction. In this paper, we provide an explicit proof of this result when

A = Mn−1(C) ⊗ On by constructing an automorphism ϕ of A for each automorphism ψ of

K0(A) so that ϕ∗ = ψ. As the methods used are purely algebraic, this result also holds when

A = Mn−1(F ) ⊗ Ln(F ), where Ln(F ) is the Leavitt algebra of module type (1, n − 1) over

a field F . Lastly, we show that these methods can produce algebra automorphisms ϕ with the

same order as their induced automorphisms ϕ∗ under certain circumstances.
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Introduction

The following thesis is written so that an undergraduate familiar with elementary abstract and linear

algebra should be able to understand the entirety of the paper with some minor omissions.

Part 1 of the paper will discuss definitions and theorems necessary for understanding the prob-

lem statement and main results presented in the second part. We begin by defining an algebra over

a field, move on to defining the Leavitt and Cuntz algebras, and finish with a discussion of lower

K-theory of C∗-algebras in terms of projections. This last section could be rewritten for Leav-

itt algebras by replacing projections with idempotents and modifying the proofs accordingly. We

will occasionally give nothing but a citation as proof for some results, as a full proof would be a

significant detour from the intended subject of the thesis.

Part 2 begins with a statement of the main problem from which a simplified, but equivalent
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version of the problem is derived. After a brief justification is given for why the problem is of

interest, the two main results and their proofs are presented. Most of these proofs rely solely on

calculation and will be better understood if the reader performs these calculations along with the

author. The section finishes by showing how the two major theorems of the paper relate to one

another.

1 Prerequisite Concepts

1.1 Universal algebras

Firstly, before defining the important Leavitt and Cuntz algebras, we define what an algebra is.

Definition 1.1. Let V be a vector space over a field F . An algebra A = 〈V, ·〉 over a field F is a

vector space V equipped with a bilinear product (a, b) 7→ a · b.

That is, for all λ1, . . . , λ4 ∈ F and v1, . . . , v4 ∈ V , the following identity holds:

(λ1v1 + λ2v2) · (λ3v3 + λ4v4) = λ1v1 · (λ3v3 + λ4v4) + λ2v2 · (λ3v3 + λ4v4)

= λ1λ3(v1 · v3) + λ1λ4(v1 · v4) + λ2λ3(v2 · v3) + λ2λ4(v2 · v4).

Note that the bilinear product on A need not be associative or commutative! However, one

usually assumes associativity unless specified otherwise. For clarity, though, we shall state that A is

an associative or a commutative algebra if these descriptions are accurate. Also noteworthy is that

an algebra need not have a multiplicative identity; algebras with a multiplicative identity are called

unital.

We provide two examples with which the reader is certainly already familiar.

Example 1.2. Let C = R2 be an algebra over R where scalar multiplication is given by

λ(a, b) = (λa, λb)

for all λ ∈ R, vector addition is given by

(a, b) + (c, d) = (a+ c, b+ d)
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and vector multiplication is given by

(a, b) · (c, d) = (ac− bd, ad+ bc)

for all (a, b), (c, d) ∈ C. It should at this point be clear that C is isomorphic to the algebra of

complex numbers C over the field R. Similar constructions can be made for the quaternions H and

octonions O.

Example 1.3. Let n ∈ Z>0 and let Mn(C) be the set of n×n matrices with complex entries. Since

matrix multiplication has an identity, is associative, and distributes with respect to addition, Mn(C)

is a unital associative algebra over C when equipped with the standard operations associated with

matrices.

We shall later define both the Leavitt and Cuntz algebras as generated by certain elements and

constrained by specific relations. Hence, we find it useful to discuss what the presentation of an

associative algebra is. In order to do so, we first must define the free left module on a set X , the

free algebra on a set X , and finally presentations of algebras. We preface these definitions with the

fact that a module is analogous to a vector space taken over a ring instead of a field.

Definition 1.4. Let X be a set and let R be a ring. The free left module on X over R is the module

M =
⊕

x∈X R. That is, a family m = (mx)x∈X in R indexed by X is an element of M if and only

if there exists a finite subset S ⊂ X such that mx 6= 0 if and only x ∈ S.

Example 1.5. Let X = {a, b, c} and let R = Z. Then the free left module M on X over R is the

set of all formal linear combinations

n1a+ n2b+ n3c

where n1, n2, n3 ∈ Z. Scalar multiplication is given by

k(n1a+ n2b+ n3c) = kn1a+ kn2b+ kn3c
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and vector addition is given by

(n1a+ n2b+ n3c) + (m1a+m2b+m3c) = (n1 +m1)a+ (n2 +m2)b+ (n3 +m3)c,

where everything but a, b, and c is an element of Z.

When X is infinite, one should think of M as one might think of an infinite dimensional vector

space, remembering that M is over a ring instead of a field.

Recall that a monoid is like a group, but does not respect the inverse axiom. This is needed for

our definition of a free algebra.

Definition 1.6. Let X be a set and let F be a field. Define a free monoid

X∞ =
∞⋃
i=1

(
i∏

j=1

X

)
,

where multiplication is given by concatenation; that is, the product of x1, x2 ∈ X∞ is simply

x1x2. Define the free algebra A on X over a field F to be the free left module on X∞ over F ,

where multiplication on A is inherited from X∞. That is, given x1, · · · , xn, y1, . . . , ym ∈ X∞ and

coefficients λ1, . . . , λn, µ1, . . . , µm ∈ F , we have

(
n∑
i=1

λixi

)(
m∑
j=1

µjyj

)
=

n∑
i=1

m∑
j=1

(λiµj)xiyj .

The multiplication on X∞ is associative and has an identity, so every free algebra is a unital

associative algebra. Now that we have defined the free algebra on a generating set X over a field F ,

we can define what a presentation of an algebra is.

Definition 1.7. Let A be the free algebra on X over a field F and let R be a subset of A. The

universal associative algebra B generated by X and subject to the relations r = 0 for all r ∈ R is

the quotient algebra B = A/〈R〉, where 〈R〉 is the ideal generated by the elements of R.

There is nothing fundamentally different about the presentation of an algebra and the presenta-

tion of a group. Before delving into some examples, we prove a theorem which will help us connect

these presentations to algebras we already know.
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Theorem 1.8. Let A be the free F -algebra generated by a set X , let B be the universal associative

F -algebra generated by X and subject to relations R = {rα : α ∈ I}, and let C be a unital associa-

tive F -algebra. Given a map f : X → C, one can define an algebra homomorphism ϕ : A→ C by

setting

ϕ
(
λ(x1x2 . . . xn)

)
= λ

n∏
i=1

f(xi)

for any string x1x2 . . . xn ∈ X∞ and λ ∈ F , and then extending linearly.

If ϕ(rα) = 0 for all α ∈ I , then there exists an algebra homomorphism ϕ : B → C such that

ϕ = ϕ◦π, where π : A→ B is the quotient map. Furthermore, if Ker(ϕ) = 〈R〉, then ϕ is injective

and if f(X) generates B, then ϕ is surjective.

This result turns out to be fairly self-evident, as the proof shall show.

Proof. Elements of B are cosets of the form a + 〈R〉, where a ∈ A, so define ϕ : B → C by

ϕ(a+〈R〉) = ϕ(a). We first claim that ϕ is well-defined. Let a, a′ ∈ A and suppose that a+〈R〉 =

a′ + 〈R〉. Thus a′ ∈ a+ 〈R〉, so there exists x ∈ 〈R〉 such that a′ = a+ x. Then

ϕ(a′ + 〈R〉) = ϕ(a′) = ϕ(a+ x) = ϕ(a) + 0 = ϕ(a+ 〈R〉),

where ϕ(a+ x) = ϕ(a) + 0 because we assumed that ϕ vanishes on the generators of 〈R〉. Hence

ϕ is well-defined. That ϕ is also an algebra homomorphism follows directly from the fact that ϕ

and π are algebra homomorphisms.

Now suppose that Ker(ϕ) = 〈R〉; we claim ϕ is injective. Let b ∈ B and suppose that ϕ(b) = 0.

Choose a ∈ A such that b ∈ a + 〈R〉. Then ϕ(b) = ϕ(a) = 0, so a ∈ 〈R〉. Since 〈R〉 is closed

under addition, a+ 〈R〉 = 〈R〉, meaning b = 0. Hence ϕ is injective.

Now suppose that f(X) generatesC; we claim ϕ is surjective. Let c ∈ C. Since f(X) generates

C, there exists string lengths l1, . . . , ln ∈ Z≥0, elements xi,1, . . . , xi,li ∈ X for all i ∈ {1, . . . , n},

and coefficients λ1, . . . , λn ∈ F such that

c =

n∑
i=1

λi

li∏
j=1

f(xi,j).

6



Set

a =
n∑
i=1

λi

li∏
j=1

xi,j .

Then ϕ(a+ 〈R〉) = ϕ(a) = c. Hence ϕ is surjective.

We now give a definition which doubles as an example.

Example 1.9. Let F be a field and let Mn(F ) be the universal unital associative algebra over F

generated by the set

X = {f1,1, f1,2, . . . , f1,n, f2,1, . . . , fn,1}

and subject to the relations

f1,i · f1,j = 0 if i > 1 (1.1)

fi,1 · fj,1 = 0 if j > 1 (1.2)

f1,i · fj,1 =


f1,1 if i = j

0 if i 6= j,

(1.3)

for all i, j ∈ {1, . . . , n}, and
n∑
i=1

fi,1 · f1,i = 1. (1.4)

Note that f1,1f1,j = f1,j for all j because (1.1), (1.3), and (1.4) imply that

f1,1f1,j = f21,1f1,j =

n∑
i=1

fi,1f1,if1,j −
n∑
i=2

fi,1f1,if1,j = f1,j −
n∑
i=2

fi,1 · 0 = f1,j .

Likewise, we also have fi,1f1,1 = fi,1 for all i.

LetMn be the algebra of (n × n)-matrices with entries in F . We claim thatMn
∼= Mn(F ).

For each i, j ∈ {1, . . . , n}, let ei,j ∈Mn be the matrix with a 1 in the i-th row and j-th column and

0’s elsewhere. Elements of the form ei,j are called standard matrix units, or simply matrix units; it

is not difficult to verify that we can write any matrix inMn as a linear combination of matrix units.

Define a map g : X →Mn where g(f1,i) = e1,i and g(fi,1) = ei,1. Note that the multiplication in

7



Mn and its identity can be described by the relations

ei,j · ek,l =


ei,l if j = k

0 if j 6= k

and

1Mn =
n∑
i=1

ei,i =
n∑
i=1

ei,1 · e1,i.

Some simple calculations imply that we can extend g to an algebra homomorphism ϕ : Mn(F ) →

Mn by Theorem 1.8.

We claim that ϕ is, in fact, an isomorphism. In order to prove this, we shall first show that

B = {fi,1f1,j : i, j ∈ {1, . . . , n}} forms a basis for Mn(F ). We begin by showing that B spans

Mn(F ). First, note that relation (1.4) shows that multiples of the empty string are in the span of B.

Since fi,1f1,1 = fi,1 for all i and f1,1f1,j = f1,j for all j, we also know that X is a subset of the

span of B. Thus all products of length less than 2 are in span(B).

It now suffices to show that every product of length 3 and greater is equal to a product of length

0 or 2. Let l > 2 and let p = x1x2 . . . xl be a nonzero product consisting of elements of X; we

claim that p is equal to a product of length 2. Let xm be the left-most element in p of the form f1,i

for some i. Relations (1.1) and (1.3) imply that xm · · ·xl = f1,k for some k ∈ {1, . . . , n} because

p 6= 0. If m = 1, we are done because p = f1,j = f1,1f1,j , so suppose m > 1. Since m is minimal,

xm−1 must be of the form fi,1 for some i. Relations (1.2) and (1.3) imply that x1 . . . xm−1 = fj,1

for some j ∈ {1, . . . , n} because p 6= 0. Thus p = fj,1f1,k, proving the claim.

For linear independence, suppose there are λi,j ∈ F for all i, j ∈ {1, . . . , n} such that

n∑
i,j=1

λi,jfi,1f1,j = 0.

We claim that λi,j = 0 for all i, j ∈ {1, . . . , n}. Using (1.3), we see that

f1,a

(
n∑

i,j=1

λi,jfi,1f1,j

)
fb,1 = λa,bf1,1 = 0

for all a, b ∈ {1, . . . , n}. Since fi,1f1,1 = fi,1 and f1,1f1,j = f1,j , we can only have f1,1 = 0 if
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fi,1 = f1,j = 0 for all i and j, which in turn implies 0 = 1 by (1.4). This is, however, impossible in

a field, so λa,b = 0 for all a, b ∈ {1, . . . , n}. Therefore B is linearly independent and thus a basis

for Mn(F ).

Since ϕ maps B bijectively onto the basis {ei,j : i, j ∈ {1, . . . , n}} forMn, the claim that ϕ is

an isomorphism now follows. We may thus use the definitions of Mn(F ) andMn interchangeably.

1.2 Leavitt and Cuntz algebras

We now define the two algebras on which we shall focus our attention.

Definition 1.10. Let F be a field and let n ∈ Z>0. Define the n-th Leavitt algebra over F , denoted

Ln(F ), as the universal unital associative algebra on generators

s1, . . . , sn, t1, . . . , tn

subject to the relations

tisj =


1 if i = j

0 if i 6= j

for all i, j ∈ {1, . . . , n} and
n∑
i=1

siti = 1.

Formally, the connection between the n-th Leavitt algebraLn(C) and the n-th Cuntz algebraOn

is topological, since On is meant to be the completion of the ∗-algebra equivalent of Ln(C) when

the latter algebra is equipped with an induced operator norm. We shall summarize the similarity of

the two algebras for its importance in motivating the paper, but only briefly, as it strays from our

intended trajectory.

We begin by defining the involution, or ∗ operation:

Definition 1.11. A ∗-algebra (read as “star-algebra”) over C is an algebra A over C with an addi-

tional operation a 7→ a∗, called the involution, satisfying the following properties:

(1) (a+ b)∗ = a∗ + b∗ for all a, b ∈ A;

(2) (λa)∗ = λa∗ for all a ∈ A and λ ∈ C;
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(3) (a∗)∗ = a for all a ∈ A;

(4) (ab)∗ = b∗a∗ for all a, b ∈ A.

One can refer to a∗ as the adjoint of a.

A map that behaves like a homomorphism but reverses multiplication is called an antihomo-

morphism. Thus the star operation is an antihomomorphism on A. Given an algebra A, let the op-

posite algebra of A, denoted Aop, be identical to A but with reversed multiplication and conjugate

scalar multiplication. An antihomomorphism f : A → B is then equivalent to a homomorphism

f : A→ Bop.

Example 1.12. We can make Ln(C) a ∗-algebra by giving it an involution defined by (si)
∗ = ti

and (ti)
∗ = si for all i ∈ {1, . . . , n}.

In order to formally prove that the operation ∗ satisfies Definition 1.11, let B be the opposite

algebra of Ln(C); that is, define B to be the algebra over C on generators

t1, . . . , tn, s1, . . . , sn,

satisfying relations

si · tj =


1 if i = j

0 if i 6= j

for all i, j ∈ {1, . . . , n} and
n∑
i=1

ti · si = 1,

where vector multiplication is given by a · b = ba and scalar multiplication is given by λ · a = λa.

Thus B is Ln(C), but with reversed vector multiplication and conjugate scalar multiplication.

Theorem 1.8 now gives a homomorphism σ : Ln(C)→ B such that σ(si) = ti and σ(ti) = si

for all i ∈ {1, . . . , n}. As we previously discussed, we may instead regard σ as an antihomomor-

phism from Ln(C) to itself. Properties (1), (2), and (4) are consequences of σ being an antihomo-

morphism. For property (3), one need only observe that

σ2(si) = σ(ti) = si and σ2(ti) = σ(si) = ti
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for all i ∈ {1, . . . , n} in order to show that σ has order 2.

Therefore σ is a well-defined involution on Ln(C). We can trivially extend this involution to

Ln(F ) for an arbitrary non-complex field F by requiring that k = k for all k ∈ F . This will

occasionally be used as shorthand so that we may denote ti as s∗i , although it has little mathematical

utility outside being useful notation.

To construct the n-th Cuntz algebra On, choose a nonzero Hilbert space H and a unital ∗-

homomorphism π : Ln(C) → L(H), where L(H) is the algebra of bounded linear operators on H

with the operator norm. Define a norm on Ln(C) by setting ‖a‖ = ‖π(a)‖ and define On to be the

completion of Ln(C) with respect to this norm. This definition does not depend on the choice of

H or π, and makes On a normed ∗-algebra over C that satisfies the equation ‖a∗a‖ = ‖a‖2 for all

a ∈ On, and is complete with respect to its norm; such an algebra is called a C∗-algebra. However,

one may safely ignore the analytic properties ofOn, as we prefer the following equivalent definition

of a Cuntz algebra for its simplicity and similarity to Definition 1.10.

Definition 1.13. Let n be an integer greater than 1. Define the n-th Cuntz algebra On to be the

universal unital C∗-algebra on generators

s1, . . . , sn

subject to the relations

s∗i sj =


1 if i = j

0 if i 6= j

(1.5)

for all i, j ∈ {1, . . . , n}, and

n∑
i=1

sis
∗
i = 1. (1.6)

The existence of universal C∗-algebras is not as simple as the existence of universal algebras,

as free C∗-algebras do not exist. In particular, only certain types of algebraic relations produce

universal C∗-algebras; see [7] and [8] for more information.
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As we most often interact with On as a subalgebra of a matrix algebra, we redefine the matrix

algebra Mn(C) as a C∗-algebra.

Definition 1.14. Let n be a positive integer. Define Mn(C) to be the universal unital associative

C∗-algebra generated by

g1, g2, . . . , gn

and subject to the relations

gigj = 0 if i > 1

gig
∗
j =


g1 if i = j

0 if i 6= j

for all i, j ∈ {1, . . . , n}, and

n∑
i=1

g∗i gi = 1.

This definition is a simplified form of the one provided in Example 1.9. The elements gi and f1,i

correspond with one another, as do g∗i and fi,1. The presence of the adjoint means that we can also

combine relations (1.1) and (1.2) into a single relation. Although the above presentation of Mn(C)

is very slick, we prefer the notation ei,j over g∗i gj as the the former notation is a bit shorter and the

latter notation somewhat obscures the fact that it represents a matrix unit.

We could simplify the relations in Definition 1.14 slightly using properties of C∗-algebras, but

this would mangle things in terms of extending our results to the purely algebraic situation with

Mn(F ) and Ln(F ).

The algebra we will be working over most often is the C∗-algebra Mm(On), or Mm(C) ⊗ On

for those familiar with tensor products. The elements of Mm(On) are the (m ×m) matrices with

entries inOn, and are written as sums of elements of the form ei,j⊗v, where i, j ∈ {0, . . . ,m} and

v ∈ On. As one might expect, ei,j ⊗ v denotes the matrix with v in the i-th row and j-th column

and 0’s everywhere else.

We formally define tensor products in the hopes that this demystifies the notation.
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Definition 1.15. Let A and B be algebras over the same field F . Define the tensor product of A

and B to be the algebra generated by elements of the form a ⊗ b and subject to the relations that,

for any a, a′ ∈ A, b, b′ ∈ B, and λ ∈ F ,

(i) (a⊗ b) +A⊗B (a⊗ b′) = a⊗ (b+B b
′);

(ii) (a⊗ b) +A⊗B (a′ ⊗ b) = (a+A a
′ ⊗ b);

(iii) (λa⊗ b) = (a⊗ λb);

(iv) (a⊗ b) ·A⊗B (a′ ⊗ b′) = (a ·A a′ ⊗ b ·B b′).

Addition and scalar multiplication take place to the left or to the right of⊗, but not on both sides

at once as in A×B. On the other hand, multiplication is component-wise, just as in A×B.

In the case ofMm(C)⊗On, all this means is thatMm(C)⊗On is the universal unital associative

C∗-algebra on generators

e1,1 ⊗ 1, e1,2 ⊗ 1, . . . , e1,m ⊗ 1, e1,1 ⊗ s1, e1,1 ⊗ s2, . . . , e1,1 ⊗ sn

and subject to the relations

(e1,i ⊗ 1)(e1,j ⊗ 1) = 0 if i > 1

(e1,i ⊗ 1)(e1,j ⊗ 1)∗ =


e1,1 ⊗ 1 if i = j

0 if i 6= j

m∑
i=1

(e1,i ⊗ 1)∗(e1,i ⊗ 1) = 1m

(e1,1 ⊗ si)∗(e1,1 ⊗ sj)∗ =


e1,1 ⊗ 1 if i = j

0 if i 6= j

n∑
i=1

(e1,1 ⊗ si)(e1,1 ⊗ si)∗ = e1,1 ⊗ 1.

Since the algebra Mm(C) must be taken over the field C when we tensor it with On, we omit

the parentheses after M and write Mm ⊗On for convenience.

The only thing standing in the way of the problem statement is some elementary K-theory that
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we develop in the next section.

1.3 K0 of Cuntz and Leavitt algebras

K-theory is a powerful tool which appears in a multitude of mathematical fields under several dif-

ferent guises. Of primary interest to us is Banach algebra K-theory, which has much in common

with topological K-theory, although the two differ in important ways. There is another form of

K-theory known as algebraic K-theory which we use for the Leavitt algebras. Although Banach

algebra K-theory and algebraic K-theory are technically different, the K0 groups of On and Ln(F )

are identical, and can be constructed in analogous ways. We shall focus on K0 in the context of

Banach algebra K-theory in this thesis.

The K-theory of C∗-algebras (which are a special type of Banach algebra) consists of two co-

variant functors K0 and K1 from the category of C∗-algebras to the category of abelian groups. For

those unfamiliar with category theory, this means that each C∗-algebra has two associated abelian

groups K0(A) and K1(A), and every algebra homomorphism f : A→ B induces group homomor-

phisms f∗ : Ki(A) → Ki(B) for i = 0, 1. Additionally, (idA)∗ = idKi(A) and (f ◦ g)∗ = f∗ ◦ g∗

when f : B → C and g : A → B are algebra homomorphisms. The functors K0 and K1 have a

number of useful properties, although all we require is the fact that

K0

(
Mn(C)⊗A

) ∼= K0(A) and K1

(
Mn(C)⊗A

) ∼= K1(A)

for any positive integer n and any C∗-algebra A. The action of tensoring a C∗-algebra A by Mn(C)

is called stabilization, so we will refer to this property by noting that K-theory is unaffected by

stabilization.

A thorough development of Banach algebra K-theory would take far too much time and sig-

nificantly stray from the intended subject of this paper. Thus we shall limit our survey of Banach

algebra K-theory strictly to what is necessary for understanding the project. As such, we take as

known that

K0(On) ∼= Z/(n− 1)Z and K1(On) = 0

for all n ≥ 2 ([5]). This gives us the K-theory of Mm ⊗ On for all m and n, since K-theory is
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insensitive to stabilization.

Since K1 is irrelevant to us, we now need only understand what it means for K0(On) to be

isomorphic to Z/(n − 1)Z in order to proceed to the problem statement and main results. The

following overview is largely based on Joachim Cuntz’ article “K-theory for Certain C∗-algebras,”

as well as notes provided to me by my advisor, Professor Phillips.

Definition 1.16. Let A be a unital ∗-algebra.

(1) We call an element p ∈ A a projection if p = p∗ = p2. That is, p is both self-adjoint (its own

adjoint) and an idempotent (every exponent of p is identical).

(2) We write that two projections p, q ∈ A are Murray-von Neumann equivalent, denoted p ∼ q,

if there exists s ∈ A such that ss∗ = p and s∗s = q.

(3) Two projections p, q ∈ A are orthogonal if pq = 0. This is sometimes written as p ⊥ q.

(4) Given two projections p, q ∈ A, we write that q dominates p or p ≤ q if qp = p.

(5) A projection p is called infinite if there exists a projection q ∈ A such that q ∼ p, q ≤ p, and

q 6= p.

Note that, when two projections p and q are orthogonal, then qp = (pq)∗ = 0 as well as pq = 0.

Likewise, when p is dominated by q, then pq = (qp)∗ = p∗ = p. In the purely algebraic situation

(without the involution), we will need to specify that two idempotents are orthogonal if both pq and

qp are trivial; the extra structure the involution provides us means we can somewhat simplify these

definitions.

Before proceeding further we verify that Murray-von Neumann equivalence is an equivalence

relation and domination is a partial-ordering on projections.

Lemma 1.17. Let A be a unital ∗-algebra. Then Murray-von Neumann equivalence defines an

equivalence relation on the projections of A.

Proof. Let p, q, r ∈ A be projections. Clearly p ∼ p since pp∗ = p and p∗p = p. Thus ∼ is

reflexive.

Suppose p ∼ q; we claim that q ∼ p. Then there exists s ∈ A such that ss∗ = p and s∗s = q.

By the definition of the involution, we also have (s∗)(s∗)∗ = s∗s = q and (s∗)∗(s∗) = ss∗ = p.

Hence q ∼ p and ∼ is symmetric.
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Lastly, suppose that p ∼ q and q ∼ r; we claim that p ∼ r. Then there exist s, t ∈ A such that

ss∗ = p, s∗s = tt∗ = q, and t∗t = r. Since

(st)(st)∗ = s(tt∗)s∗ = s(s∗s)s∗ = (ss∗)2 = p

and

(st)∗(st) = t∗(s∗s)t = t∗(tt∗)t = (t∗t)2 = r,

it follows that p ∼ r. Hence ∼ is transitive and therefore an equivalence relation on A.

Lemma 1.18. Let A be a unital ∗-algebra. Then domination defines a partial ordering on A the

projections of A.

Proof. Let p, q, r ∈ A all be projections. Clearly p ≤ p, since p2 = p. Thus ≤ is reflexive.

Suppose that p ≤ q; we claim that q ≤ p implies that p = q. As we noted after Definition

1.16, p ≤ q implies that qp = pq = p and q ≤ p implies that pq = qp = q. Combining these two

equations shows that p = q, so ≤ is anti-symmetric.

Lastly, suppose that p ≤ q and q ≤ r; we claim that p ≤ r. Using the definition of domination,

we find that

rp = r(qp) = (rq)p = qp = p.

Hence p ≤ r and ≤ is transitive. Therefore ≤ defines a partial ordering on A.

Suppose we are given a C∗-algebra A. We want to build K0(A) from the set of Murray-von

Neumann equivalence classes of projections in A. However, there are issues with defining the

addition of two equivalence classes [p] and [q]. Ideally, we would want [p] + [q] to be [p + q], but

p+ q is only a projection when pq = −qp. If this were true, then

pq = −qp = (−qp)p = (pq)p = p(qp) = p(−pq) = −pq,

so pq = 0 and p ⊥ q. Thus, if p and q are projections, p + q is a projection if and only if p and q

are orthogonal. If we could always choose p0 ∼ p and q0 ∼ q such that p0 ⊥ q0, then we could set

[p] + [q] = [p0 + q0].
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This operation turns out to be well-defined, too. Suppose that, in addition to p0 and q0, there

exist projections p1, q1 ∈ A such that p ∼ p1, q ∼ q1, and p1 ⊥ q1. Then there exist s, t ∈ A such

that ss∗ = p0, s∗s = p1, tt∗ = q0, and t∗t = q1. Before we construct a Murray-von Neumann

equivalence between p0 + q0 and p1 + q1, we must show that s = p0sp1 and t = q0tq1; the proofs

for both identities are the same, so we only consider the case with s. Since p0sp1 = ss∗sp1 =

sp1 = ss∗s, it suffices to show that s = ss∗s. Note that

(ss∗s− s)∗(ss∗s− s) = (s∗ss∗ − s∗)(ss∗s− s)

= s∗ss∗ss∗s− s∗ss∗s− s∗ss∗s+ s∗s

= p31 − p21 − p21 + p1 = 0.

The C∗-algebra identity ‖x∗x‖ = ‖x‖2 implies that ‖ss∗s − s‖2 = 0, so ss∗s − s = 0 by the

definition of a norm. Consequently st∗ = (p0sp1)(q1t
∗q0) = 0 and s∗t = (p1s

∗p0)(q0tq1) = 0

because p0 ⊥ q0 and p1 ⊥ q1. Hence

(s+ t)(s+ t)∗ = ss∗ + st∗ + ts∗ + tt∗ = p0 + q0

and

(s+ t)∗(s+ t) = s∗s+ s∗t+ t∗s+ t∗t = p1 + q1,

so (p0 + q0) ∼ (p1 + q1) and our operation is well-defined.

With this in mind, we define a family of projections over which this construction always works.

Definition 1.19. Let A be a C∗-algebra and let P ⊂ A be a set of projections in A. We call P

properly infinite if it satisfies the following axioms:

(A1) If p, q ∈ P and p ⊥ q, then p+ q ∈ P .

(A2) If p ∈ P and q is a projection in A such that p ∼ q, then q ∈ P .

(A3) For all p, q ∈ P , there exists p0 ∈ P such that p0 ∼ p, p0 ≤ q, p0 6= q, and q − p0 ∈ P .

(A4) If q ∈ A is a projection such that p ≤ q for some p ∈ P , then q ∈ P .

The third axiom might look somewhat perplexing, but, given p, q ∈ P , it allows us to choose

p0 ∼ p and q0 ∼ q such that p0 ⊥ q0. First, choose p0 ∈ P so that it satisfies (A3) for p, q ∈ P , and
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then choose q0 so that it satisfies (A3) for q, q − p0 ∈ P . Then

p0q0 = p0(q − p0)q0 = (p0q − p20)q0 = (p0 − p0)q0 = 0.

We technically only need the first three axioms in order to make a groupG(P) from the Murray-

von Neumann equivalence classes in P , but require the fourth axiom so thatG(P) corresponds with

the standard definition of K0(A).

Definition 1.20. Let A be a C∗-algebra and let P be a properly infinite set of projections. Set

G(P) = {[p] : p ∈ P} and equip G(P) with the binary operation

[p] + [q] = [p0 + q0],

where p0 ∼ p, q0 ∼ q, and p0 ⊥ q0.

Theorem 1.21. Let A be a C∗-algebra and let P be a properly infinite set of projections. Then

G(P) is a well-defined abelian group.

The proof of Theorem 1.21 is a more detailed version of the proof of Theorem 1.4 in [5]. We

require the following lemma, which we prove first.

Lemma 1.22. Let A be a C∗-algebra, and let d, e, f ∈ A be projections such that e, f ≤ d, e ∼ f ,

and e ⊥ f . Then d− e ∼ d− f .

Proof. Choose s ∈ A such that ss∗ = e and s∗s = f . Recall that s = esf . Thus es = sf = s

and fs = se = 0, the latter following from e ⊥ f . We also have ds = sd = s because e, f ≤ d.

Therefore

s(d− e− f) = s− 0− s = 0

and

(d− e− f)s = s− s− 0 = 0.

Taking the adjoint of both sides of the above equations shows that (d− e− f)s∗ and s∗(d− e− f)
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both vanish. Hence

(
(d− e− f) + s

)(
(d− e− f) + s

)∗
= (d− e− f)2 + (d− e− f)s∗ + s(d− e− f) + ss∗

= (d− e− f) + 0 + 0 + f

= d− e

and

(
(d− e− f) + s

)∗(
(d− e− f) + s

)
= (d− e− f)2 + (d− e− f)s+ s∗(d− e− f) + s∗s

= (d− e− f) + 0 + 0 + e

= d− f,

so d− e ∼ d− f .

Proof of Theorem 1.21. We have already shown + is well-defined in the discussion preceding Def-

inition 1.19. Since + is clearly commutative in G(P), we now need only show G(P) is a group.

We begin with associativity of +. Let p, q, r ∈ P . Choose p0 ∈ P such that p0 ∼ p, p0 ≤ q,

and q − p0 ∈ P . Then choose q0 ∈ P such that q0 ∼ q, q0 ≤ q − p0, and q − p0 − q0 ∈ P . Lastly,

chose r0 ∈ P such that r0 ∼ r and r0 ≤ q − p0 − q0. Then

r0p0 = r0(q − p0 − q0)p0 = r0(p0 − p20 − 0) = 0

and

r0q0 = r0(q − p0 − q0)q0 = r0(q0 − 0− q20) = 0,

so r0 ⊥ p0 and r0 ⊥ q0. Hence

(
[p] + [q]

)
+ [r] = [p0 + q0] + [r] = [p0 + q0 + r0] = [p] + [q0 + r0] = [p] +

(
[q] + [r]

)
,

so + is associative.

We next show that G(P) has an identity with respect to +. Let p, q ∈ P . Using (A3), choose

p0 ∈ P such that p ∼ p0 ≤ p and p0 6= p. We may assume q ≤ p0 without loss of generality by
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(A3); simply choose an element Murray-von Neumann equivalent to q which is dominated by p0.

Now use (A3) to choose q0 ∈ P such that q ∼ q0 ≤ q and q0 6= q. We claim that [p−p0] = [q−q0],

and that [p− p0] is the identity of G(P).

Thus (p− p0)q = pp0q − p0q = q − q = 0, so q and q0 are orthogonal to p− p0 (the latter is a

consequence of q dominating q0). Hence

[p− p0] + [q − q0] = [p− p0 + q − q0] =
[
p− (p0 − q + q0)

]
.

We aim to show that the equivalence class on the right is equal to [p− p0].

Firstly, we claim that p0 − q + q0 ∼ p0. Choose t ∈ A such that tt∗ = q and t∗t = q0. Since

p0 − q is orthogonal to both q and q0, we have (p0 − q)t = (p0 − q)t∗ = 0. Thus

(
(p0 − q) + t

)(
(p0 − q) + t

)∗
= (p0 − q)2 + (p0 − q)t∗ + t(p0 − q) + tt∗

= (p0 − q) + q0 = p0,

and

(
(p0 − q) + t

)∗(
(p0 − q) + t

)
= (p0 − q)2 + (p0 − q)t∗ + t(p0 − q) + t∗t

= (p0 − q) + q0 = p0 − q + q0,

proving the claim.

By (A3), there exists p1 ∈ P such that p ∼ p1 ≤ p − p0. Thus p1 ∼ p0 ∼ p0 − q + q0 by

transitivity of ∼. Furthermore,

p1p0 = p1(p− p0)p0 = p1(p0 − p20) = 0

and

p1(p0 − q + q0) = p1(p0 − p0q + p0q0) = 0,

so p1 is orthogonal to both p0 and p0 − q + q0. Therefore p− p0 ∼ p− p1 ∼ p− (p0 − q + q0) by
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Lemma 1.22, so

[p− p0] + [q − q0] =
[
p− (p0 − q + q0)

]
= [p− p0].

An analogous argument proves that [p− p0] + [q − q0] = [q − q0], so [p− p0] = [q − q0].

Now let q ∈ P and use (A3) to choose q0 ∈ P such that q ∼ q0 ≤ q and q0 6= q (we no longer

require q ≤ p0). That [p− p0] is the identity now follows from the fact

[q] + [p− p0] = [q] + [q − q0] = [q0] + [q − q0] = [q0 + q − q0] = [q].

Inverses also come easily now. Choose q1 ∈ P such that q ∼ q1 ≤ q − q0. Then

[q] + [q − q0 − q1] = [q1] + [q − q0 − q1] = [q1 + q − q0 − q1] = [q − q0],

so [q − q0 − q1] is the inverse of [q].

Cuntz showed that G(P) ∼= K0(A) when P ⊂ A is nonempty and properly infinite ([5], Theo-

rem 1.4), so we shall simply define K0(A) to be G(P) for a particular choice of P .

Theorem 1.23. Let A be a simple C∗-algebra and let P be the set of infinite projections in A. Then

P is properly infinite.

Proof. We shall only verify that P satisfies (A1), (A2), and (A4), as verifying (A3) is significantly

more involved. For a proof of (A3), see the proof of Proposition 1.5 in [5]. Let p ∈ P and let q ∈ A

be a projection throughout. Choose p0 ∈ A such that p ∼ p0 ≤ p and p 6= p0.

For (A1), suppose that q is also infinite and that p and q are orthogonal. We claim that p+ q ∼

p0 + q ≤ p+ q and p0 + q 6= p+ q. Note that p0q = p0pq = 0, so p0 ⊥ q. Thus p+ q ∼ p0 + q by

the same reasoning we used to show + is a well-defined operation on G(P). We also have

(p+ q)(p0 + q) = pp0 + pq + qp0 + q2 = p0 + q,

so p0+ q ≤ p+ q. Lastly, p0+ q = p+ q contradicts our assumption that p 6= p0, so p0+ q 6= p+ q.

Therefore p0 + q0 6= p+ q and (A1) holds for P .

For (A2), suppose that p ∼ q. Then there exists s, t ∈ A such that ss∗ = p0, s∗s = tt∗ = p, and
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t∗t = q. Observe that

(t∗p0t)
2 = t∗p0pp0t = t∗p0t and (t∗p0t)

∗ = t∗p∗0t = t∗p0t,

so t∗p0t is a projection. We also have

t∗p0tq = t∗p0tt
∗t = t∗p0pt = t∗p0t,

so t∗p0t ≤ q. Furthermore, (p0t)(p0t)∗ = p0pp0 = p0 and (tp0)
∗(p0t) = t∗p0t, so t∗p0t ∼∼ q by

transitivity of ∼. Lastly, if t∗p0t = q, then

p = p2 = tt∗tt∗ = tqt∗ = t(t∗p0t)t
∗ = pp0p = p0,

a contradiction, so t∗p0t 6= q. Therefore q is infinite and (A2) holds for P .

For (A4), suppose that p ≤ q. Since p ⊥ q − p, we can express q as a sum of two orthogonal

projections, q − p and p. As p0 ∼ p, we have q = q − p + p ∼ q − p + p0. Multiplying q and

q − p+ p0 yields

q(q − p+ p0) = q2 − qp+ qpp0 = q − p+ p0,

so q− p+ p0 ≤ q. Lastly, q = q− p+ p0 if and only if p = p0, so q 6= q− p+ p0. Thus q is infinite

and therefore q ∈ P .

Definition 1.24. Let A be a simple unital C∗-algebra and let P ⊂ A be the set of all infinite

projections in A. Set K0(A) = G(P).

As it so happens,On is simple ([4], Theorem 1.12), so we can interpret K0(On) ∼= Z/(n− 1)Z

using the above definition. Furthermore, every projection in On is infinite, so we need not check

whether a projection is infinite or not in the following discussion.

The projections we will be most interested in are those of the form pi = sis
∗
i , or pj,i = sjpis

∗
j ,

or some longer self-adjoint string pi1,...,ik . Note that the projections pi = sis
∗
i are all orthogonal to

one another and Murray-von Neumann equivalent to 1 by (1.5), as is the case for any pi1,...,ik . Thus
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[1] = [sis
∗
i ] for all i, and

[1] =

[
n∑
i=1

sis
∗
i

]
=

n∑
i=1

[sis
∗
i ] = n · [1].

Hence (n− 1) · [1] = 0, so [1− sis∗i ] = 0 for all i ∈ {1, . . . , n}. We also have

[sis
∗
i ] + [1− sis∗i − sisis∗i s∗i ] = [sisis

∗
i s
∗
i + 1− sis∗i − sisis∗i s∗i ] = [1− sis∗i ] = 0,

so the inverse of sis∗i is [1−sis∗i −sisis∗i s∗i ] for all i. Both of these results corroborate what we saw

in the proof of Theorem 1.21. In [5], it is shown that k · [1] = 0 if and only if k ≡ 0 mod (n−1) and

that every element in K0(On) is a multiple of [1], which is how we know K0(On) ∼= Z/(n− 1)Z.

On the other hand, the preferred generator of K0(Mm ⊗ On) is [e1,1 ⊗ 1], which we write as

[1] because [ei,i ⊗ p] = [p] for all projections p ∈ On. One should be aware of the following

Murray-von Neumann equivalences on Mm ⊗On, as they will appear often:

e1,1 ⊗ 1 ∼ ei,i ⊗ 1 ∼ ei,i ⊗ sjs∗j .

Now that we have defined K0, we can calculate the K0-class of any projection in Mm⊗On and

are able to state the problem this thesis intends to (partially) answer.

For the purely algebraic case, there is an analogous derivation of K0(R) for purely infinite

simple unital rings using idempotents instead of projections. One can reuse most of the proofs

of the above statements with just a few changes in methodology. For example, two idempotents

e, f ∈ R are algebraically Murray-von Neumann equivalent if there exists s, t ∈ R such that st = e

and ts = f . It does not immediately follow that esf = s and fte = t as in the C∗-algebra case, but

one can show that

(esf)(fte) = esfte = estste = e4 = e

and

(fte)(esf) = ftesf = ftstsf = f4 = f,

so one can choose s0, t0 ∈ R such that s0t0 = e, t0s0 = f , es0f = s0, and ft0e = t0. Disregarding

slight modifications like the one above, our definition of K0(R) for a purely infinite simple unital

23



ring R is “isomorphic” to our definition of K0(A) for a purely infinite simple unital C∗-algebra A.

By Theorem 4.1 in [2], we have

K0

(
Mm(F )⊗ Ln(F )

) ∼= K0(Ln(F )) ∼= Z/(n− 1)Z.

As far as the author knows, K1(Ln(F )) is unknown, so one should ignore any occurrences of K1

in the algebraic formulation of the problem using Ln(F ) instead of On

2 The Automorphism Lifting Problem and Lifting Theorems

2.1 Problem statement

In its most general form, the problem we shall investigate is as follows.

Problem 2.1. Let n be an integer greater than 1 and let K∗(A) = K0(A)⊕K1(A) for a C∗-algebra

A. Given any element ψ = (ψ0, ψ1) in the subgroup

Aut(K0(Mn−1 ⊗On))× Aut(K1(Mn−1 ⊗On)) ⊂ Aut(K∗(Mn−1 ⊗On)),

write an explicit formula for an automorphism ϕ ofMn−1⊗On such that the induced automorphism

ϕ∗ of K∗(Mn−1 ⊗On) is equal to ψ.

Furthermore, if ψ has order l in Aut(K∗(Mn−1 ⊗On)), can one choose ϕ so that it has order l

in Aut(Mn−1 ⊗On)?

The existence of solutions to all cases of Problem 2.1 are known (see [6]), but explicit formulas

for ϕ are not, hence the phrasing of the problem.

There are three simplifications that can be made to the above problem, which is stated in such a

way that it could be reused by replacing Mn−1 ⊗On with any C∗-algebra A. Firstly, K1(Mn−1 ⊗

On) = 0, so ψ = (ψ0, ψ1) = (ψ0, 0) and K∗(Mn−1 ⊗ On) = K0(Mn−1 ⊗ On). Secondly, as

K0(Mn−1 ⊗On) = Z/(n− 1)Z, we have isomorphisms

Aut
(
K0(Mn−1 ⊗On)

) ∼= Aut
(
Z/(n− 1)Z

) ∼= (Z/(n− 1)Z
)×
,
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where R× is the unit subgroup of a ring R. The second isomorphism is derived by noting that

each endomorphism ψ of (Z/(n − 1)Z,+) is determined by ψ(1), and that ψ is an isomorphism

if and only if ψ(1) generates (Z/(n − 1)Z,+). Thus ψ is an automorphism if and only if ψ(1) is

relatively prime with n− 1. We can thus narrow down the choice of an automorphism ψ = (ψ0, 0)

to choosing an integer k ∈ {1, . . . , n−1} satisfying gcd(k, n−1) = 1. Lastly, an automorphism ψ

of (Z/(n−1)Z,+) given by 1 7→ k has the same order as k ∈ (Z/(n−1)Z, ·) because ψl(1) = kl.

The existence of a minimal positive integer l such that kl ≡ 0 mod (n − 1) is guaranteed because

(Z/(n− 1)Z)× is finite.

We can therefore restate the problem like so.

Problem 2.2. Let n be an integer greater than 1. For each k ∈ {1, . . . , n − 1} relatively prime to

n− 1, write an explicit formula for an automorphism ϕ of Mn−1 ⊗On such that ϕ∗([1]) = k · [1].

Let l be the multiplicative order of k in Z/(n − 1)Z. Can one choose ϕ so that l is also the

minimal positive integer satisfying ϕl = idMn−1⊗On?

Before moving on to the main results, the author feels the need to explain why Mn−1⊗On was

chosen instead ofMm⊗On for somem 6= n−1, or simplyOn. As one will recall from our overview

of K-theory, the Murray-von Neumann equivalence class of 1 ∈ On generates K0(On). Since

isomorphisms send identities to identities, any automorphism of On sends 1 to 1, so its induced

map on K0 is the identity and thus trivial.

The choice to work overMn−1⊗On instead of some other matrix algebraMm⊗On is somewhat

more arbitrary, but Mn−1 ⊗On has the advantage that the K0-class of its identity 1n−1 is 0:

[1n−1] =

[
n−1∑
i=1

ei,i ⊗ 1

]
=

n−1∑
i=1

[ei,i ⊗ 1] = (n− 1) · [1] = 0.

More generally, the K0-class of the identity 1m ∈ Mm ⊗ On is (m mod (n − 1)) · [1]. Say m ≡

m′ mod (n− 1) for some m′ ∈ {0, . . . , n− 1}. Then every automorphism ϕ of Mm⊗On satisfies

ϕ∗(m
′ ·[1]) = m′ ·[1], so we can only consider automorphisms of Z/(n−1)Z that fixm′. Ifm′ 6= 0,

this either limits our choices for automorphism of Z/(n− 1)Z, or trivializes the entire problem by

forcing ψ(1) = 1. For example, the only automorphism of Z/4Z that sends 3 to itself is the identity,

so Problem 2.1 is trivial for M3 ⊗O5. However, every automorphism of Z/4Z sends 2 to itself, so
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Problem 2.1 is completely reasonable for M2⊗O5. Regardless, we decide to focus on Mn−1⊗On

so as to allow the maximum number of choices of ψ : K0(Mn−1⊗On)→ K0(Mn−1⊗On). Along

the way, we happen to obtain partial answers to the versions of Problem 2.2 for very specific choices

of Mm ⊗On.

Finally, some words should be said about why one would want to answer these problems.

A solution to the first part of Problem 2.2 would yield a function σ : Aut(K0(Mn−1 ⊗ On)) →

Aut(Mn−1 ⊗ On) such that σ(ψ)∗ = ψ for all ψ ∈ Aut(K0(Mn−1 ⊗ On)). This directly shows

that the K-theoretic map Aut(Mn−1 ⊗On)→ Aut(K0(Mn−1 ⊗On)) is surjective by constructing

an element in the preimage of each element in Aut(K0(Mn−1 ⊗ On)). If one could define σ so

that σ(ψ) ◦ σ(ψ′) = σ(ψ′) ◦ σ(ψ) for all ψ and ψ′ and σ(ψ) has the same order as ψ for all ψ,

then σ would be a homomorphism. In particular, a full solution to Problem 2.2 yields a homomor-

phism σ when Aut(K0(Mn−1 ⊗ On)) is cyclic. In this case, one could regard σ as a group action

of Aut(K0(Mn−1 ⊗ On)) on Mn−1 ⊗ On. Both partial and full answers reveal valuable infor-

mation about the algebraic invariant K0(Mn−1 ⊗ On) and how its automorphism group relates to

Aut(Mn−1⊗On). These solutions will also apply to the purely algebraic case Mn−1(F )⊗Ln(F ),

for which the answer to Problem 2.1 is not known.

Algebraic invariants of C∗-algebras, especially those related to the functors K0 and K1, play a

major role in the classification of C∗-algebras. Various sorts of equivalences between C∗-algebras

imply or can be deduced from isomorphic K-theories and K-theoretic properties. This is the main

motivation for solving Problem 2.2, which is the simplest case of a broader problem dealing with a

family of C∗-algebras that contains the Cuntz algebra On for all n.

2.2 Ignoring the order requirement

Here we address the first part of Problem 2.2 and ignore the second part, which asks that the lifted

automorphism has the same finite order as the K0-automorphism. As it so happens, relaxing this

requirement makes it possible to construct lifts of every automorphism of K0(Mn−1 ⊗On).

Theorem 2.3. Let n and k be integers such that 1 < k < n and gcd(k, n − 1) = 1. Then there

exists an automorphism ϕ : Mn−1 ⊗On →Mn−1 ⊗On such that ϕ∗([1]) = k · [1].

This is, in fact, a corollary of a more specific result:
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Theorem 2.4. Let n and k be integers such that 1 < k < n and gcd(k, n − 1) = 1, and let l be

the multiplicative order of k in Z/(n− 1)Z. Set m =
∑l−1

i=0 k
i. Then there exists an automorphism

ϕ : Mm ⊗On →Mm ⊗On such that ϕ∗([1]) = k · [1].

We can derive Theorem 2.3 from Theorem 2.4 by observing that

(k − 1)m = kl − 1 ≡ 0 mod (n− 1),

with n, k, l, and m as in Theorem 2.4. By Theorem 5.2 of [1], there exists an isomorphism

τ : M(k−1)m ⊗ On → Mn−1 ⊗ On that preserves K0-classes. Then τ ◦ (idMk−1
⊗ ϕ) ◦ τ−1 is

an automorphism satisfying the conditions of Theorem 2.3, where ϕ is as in Theorem 2.4. More-

over, τ ◦ (idMk−1
⊗ ϕ) ◦ τ−1 has the same order as ϕ, so this method is applicable when we do

finally consider finite order.

Integers like m happen to be crucial in the proof of Theorem 2.4, so we formally define an

integer function that generalizes its construction for convenience.

Notation 2.5. Let f : (Z≥0)2 → Z≥0 be the function defined by

f(k, p) =

p−1∑
i=0

ki

for all k, p ∈ Z≥0.

Each exponent ki represents a (ki × ki) matrix in Mf(k,l) ⊗ On. We plan to define ϕ on

Mf(k,l) ⊗On by the following family of isomorphisms.

Lemma 2.6. Let n and k be integers such that 1 < k < n and gcd(k, n − 1) = 1, and let l be the

multiplicative order of k in Z/(n − 1)Z. For all p ∈ {0, . . . , l − 1}, identify the matrix algebra

Mkp(On) with the upper left (kp × kp) matrix in Mkl−1(On).

Then there exists a family of isomorphismsψp : Mkp⊗On →Mkp+1⊗On for all p ∈ {0, . . . , l−

2}, such that ψp+1 restricts to ψp on Mkp(On) for all p ∈ {0, . . . , l − 2}.

Proof. Once we have defined ψ0 : M1 ⊗ On → Mk ⊗ On, we will set ψi = idMkp
⊗ ψ0 for

all i ∈ {2, . . . , l − 2}. For the student unfamiliar with the tensor product of two maps, note that
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Mkp+1⊗On ∼=Mkp⊗Mk⊗On can be decomposed into k2p square matrices of dimension k. Then

ψi can be defined so that

ψi(ei,j ⊗ v) = ei,j ⊗ ψ0(v),

where ei,j identifies the (k × k) matrix in Mkp+1 ⊗ On and ψ0(v) identifies what goes inside the

(k × k) matrix.

The existence of ψ0 is a consequence of a result of Abrams, Ánh, and Pardo, who showed that

On ∼= Md ⊗On if and only if gcd(d, n − 1) = 1 ([1], Theorem 4.14). Moreover, one can provide

an explicit formula for each of these isomorphisms, which we omit for brevity. In our case, we have

gcd(k, n− 1) = 1 by assumption, so let ψ0 be as defined in [1], save for the fact we tensorOn with

the trivial matrix algebra M1.

It now immediately follows from the definition of each ψi that ψp+1|Mkp⊗On = ψp.

As ψp(e1,1 ⊗ 1) = ψ0(e1,1 ⊗ 1) = 1k for all p, we know that (ψp)∗([1]) = k · [1] because

the K0-class of an element in Mkp ⊗ On is identical to its K0-class in Mf(k,l) ⊗ On. This will be

important in the following proof.

Proof of Theorem 2.4. Unlike in Lemma 2.6, here we identify the matrix algebras

Mk0 ⊗On,Mk1 ⊗On, . . . ,Mkl−1 ⊗On

with matrices along the diagonal of Mf(k,l) ⊗ On. In particular, for all p ∈ {0, . . . , l − 1}, we

identify the matrix algebra Mkp ⊗ On with the (kp × kp) matrix in Mf(k,l) ⊗ On whose top left

corner is located in the (1 + f(k, p))-th row and (1 + f(k, p))-th column of Mf(k,l) ⊗ On. Thus

ei,j ⊗ 1 ∈Mkp ⊗On if and only if

1 + f(k, p) ≤ i, j ≤ f(k, p+ 1).

The intention of this identification is to have ϕ map Mkp ⊗ On onto Mkp+1 ⊗ On for all p ∈

{0, . . . , l− 2} and to map Mkl−1 ⊗On onto Mk0 ⊗On. We shall achieve this by using the isomor-

phisms from Lemma 2.6.
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Let ψ0, . . . , ψl−2 be as in Lemma 2.6 and define ψl−1 : Mkl−1 ⊗On →M1 ⊗On by

ψl−1 = ψ−10 ◦ ψ
−1
1 ◦ · · · ◦ ψ

−1
l−2.

We begin by defining projections D1, . . . , Dn−1 that describe where ϕ will send the diagonal ele-

ments ei,i ⊗ 1 of Mf(k,l) ⊗On. Let i ∈ {1, . . . , f(k, l)}. Then there exists p ∈ {1, . . . , l− 1} such

that f(k, p) + 1 ≤ i ≤ f(k, p+ 1). Set

Di = ψp(ei,i ⊗ 1).

We want ϕ(ei,i⊗1) = Di, so we must define ϕ(e1,i⊗1) so thatD1 = ϕ(e1,i⊗1)ϕ(e1,i⊗1)∗ and

Di = ϕ(e1,i⊗1)∗ϕ(e1,i⊗1). Thus we must construct Murray-von Neumann equivalences between

D1 and Di for all i ∈ {1, . . . , f(k, l)}. For i ∈ {1, . . . , f(k, l − 1)}, this is straightforward; the Di

in this range can be written as

Di =
k∑

α=1

ek(i−1)+α+1,k(i−1)+α+1 ⊗ 1.

Set

Ui =

k∑
α=1

eα+1,k(i−1)+α+1 ⊗ 1

for all i ∈ {1, . . . , f(k, l − 1)}. Then UiU∗i = D1 and U∗i Ui = Di for all i ∈ {1, . . . , f(k, l − 1)}.

Note that U1 = D1.

Showing that [Di] = k · [1] in K0(M1 ⊗ On) for all i ∈ {f(k, l − 1) + 1, . . . , f(k, l)} is

slightly less straightforward. Recall that (ψp)∗ : K0(Mkp ⊗ On) → K0(M
kp+1 ⊗ On) is given by

[1] 7→ k · [1] for all p. Since k has order l in Z/(n − 1)Z, the inverse map (ψ−1p )∗ is given by

[1] 7→ kl−1 · [1] for all p ∈ {0, . . . , l − 2}. Functoriality of K0 implies that

(ψl−1)∗ = (ψ−10 )∗ ◦ (ψ−11 )∗ ◦ · · · ◦ (ψ−1l−2)∗

and therefore that (ψl−1)∗([1]) = (kl−1)l−1 · [1]. As

(kl−1)l−1 = kl
2−2l+1 = kl

2−2l · k ≡ 1 mod (n− 1),
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it follows that Di = ψl−1(ei,i ⊗ 1) has K0-class k · [1] for all i ∈ {f(k, l − 1), . . . , f(k, l)}.

We claim that any projection whose K0-class is k · [1] ∈ K0(On) can be written as a sum of k

orthogonal projections, each of which is Murray-von Neumann equivalent to 1. This happens to be

true of any purely infinite simple unital C∗-algebra, as then (A3) holds for all nonzero projections

(because every projection is infinite) and any two nonzero projections are Murray-von Neumann

equivalent if and only if they have the sameK0-class. Let p ∈ On be a projection and let p = k · [1].

If k = 1, we are done, so suppose k > 1. Then there is a projection q1 ∈ On such that 1 ∼ q1 ≤ p

and q1 6= p. Therefore p = (p− q1) + q1 and p− q1 ⊥ q1, so

[p− q1] + [1] = [p− q1] + [q1] = [p− q1 + q1] = [p] = k · [1].

Consequently we have [p − q1] = (k − 1) · [1], and we can repeat this process for p − q1 until we

have projections q1 ∼ · · · ∼ qk−1 ∼ 1 such that qj ≤ p−
∑j−1

i=1 qi for all j. Set qk = p−
∑k−1

i=1 qi.

Then p =
∑k

i=1 qi and qi ⊥ qi+1 for all i < k − 1, so qi ⊥ qj for all i, j. This proves the claim.

Thus, for each i ∈ {f(k, l − 1) + 1, . . . , f(k, l)}, there exists wi,1, wi,2, . . . , wi,k ∈ On such

that

Di = e1,1 ⊗
k∑

α=1

w∗i,αwi,α,

wi,αw
∗
i,α = 1 for all i and α, and w∗i,αwi,α ⊥ w∗i,βwi,β if and only if α 6= β. Thus wi,αw∗i,β = 0 if

and only if α 6= β. Set

Ui =
k∑

α=1

eα+1,1 ⊗ wα,i

for all i ∈ {f(k, l − 1) + 1, . . . , f(k, l)}. These Ui also satisfy UiU∗i = D1 and U∗i Ui = Di.

For all j ∈ {1, . . . , n}, set

Vj = ψ0(e1,1 ⊗ sj).

We claim that there exists a unique endomorphism ϕ : Mf(k,l) ⊗ On → Mf(k,l) ⊗ On such that

ϕ(e1,i ⊗ 1) = Ui for all i ∈ {1, . . . , f(k, l)} and ϕ(e1,1 ⊗ sj) = Vj for all j ∈ {1, . . . , n}. In order
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to prove this, we shall show that the following relations hold for all appropriate values of i and j:

UiUj = 0 if i > 1 (1)

UiU
∗
j =


U1 if i = j

0 if i 6= j.

(2)

n−1∑
i=1

U∗i Ui = 1f(k,l) (3)

V ∗i Vj =


U1 if i = j

0 if i 6= j

(4)

n∑
j=1

VjV
∗
j = U1. (5)

We begin by proving relation (1). Let i, j ∈ {1, . . . , f(k, l)} and suppose i > 1. If i ≤

f(k, l − 1), then

Ui =
k∑

α=1

eα+1,k(i−1)+α+1 ⊗ 1

and k(i− 1) + α+ 1 > β + 1 for all α, β ∈ {1, . . . , k}. Alternatively, if i > f(k, l − 1), then

Ui =
k∑

α=1

eα+1,1 ⊗ wα,i

and 1 < β + 1 for all β ∈ {1, . . . , k}. Thus

Ui

k∑
β=1

eβ+1,k(j−1)+β+1 ⊗ 1 = 0

and

Ui

k∑
β=1

eβ+1,1 ⊗ wβ,j = 0

by definition of matrix unit multiplication. Therefore UiUj = 0, proving relation (1).

We move on to proving relation (2). We have already shown that UiU∗i = D1 = U1, so we

need only check the case i 6= j, and specifically the case when i < j since UiU∗j = 0 implies that

UjU
∗
i = (UiU

∗
j )
∗ = 0. Let i, j ∈ {1, . . . , f(k, l)}. Then there exists p, p′ ∈ {0, . . . , l − 2} such
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that 1 + f(k, p) ≤ i ≤ f(k, p + 1) and 1 + f(k, p′) ≤ j ≤ f(k, p′ + 1). There are three cases to

consider depending on where i and j are in relation to f(k, l − 1).

Case 1: 1 ≤ i < j ≤ f(k, l − 1).

Since i < j, we have k(j − i) ≥ k. Thus

k(i− 1) + α+ 1 6= k(j − 1) + β + 1

for all α, β ∈ {1, . . . , k}, so

UiU
∗
j =

(
k∑

α=1

eα+1,k(i−1)+α+1 ⊗ 1

)(
k∑

β=1

ek(i−1)+β+1,β+1 ⊗ 1

)
= 0.

Case 2: 1 ≤ i ≤ f(k, l − 1) < j ≤ f(k, l).

Clearly k(i− 1) + α+ 1 > 1 for all α ∈ {1, . . . , k}, so

UiU
∗
j =

(
k∑

α=1

eα+1,k(i−1)+α+1 ⊗ 1

)(
k∑

β=1

e1,β+1 ⊗ w∗j,β

)
= 0.

Case 3: f(k, l − 1) < i < j ≤ f(k, l)

Since ei,i ⊗ 1 and ej,j ⊗ 1 are orthogonal projections in Mpl−1 ⊗ On and the map ψl−1 is an

isomorphism, the projections

ψl−1(ei,i ⊗ 1) = Di = U∗i Ui

and

ψl−1(ej,j ⊗ 1) = Dj = U∗j Uj

are also orthogonal. The identity

(U∗i Ui)(U
∗
j Uj) = DiDj = 0

implies that UiU∗j = 0, proving relation (2) holds.

For relation (3), we use the fact that, for all i ∈ {1, . . . , f(k, l)},

UiU
∗
i = Di = ψp(ei,i ⊗ 1)
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for the unique p ∈ {0, . . . , l − 2} satisfying f(k, p) + 1 ≤ i ≤ f(k, p+ 1). Since

f(k,p+1)∑
i=1+f(k,p)

ψp(ei,i ⊗ 1) = ψp(1kp) = 1kp+1 =

f(k,p+2)∑
i=1+f(k,p+1)

ei,i ⊗ 1

for all p < l − 1, we have

f(k,l)∑
i=1

U∗i Ui =
l−1∑
p=0

f(k,p+1)∑
i=f(k,p)+1

Di

=
l−2∑
p=0

f(k,p+1)∑
i=f(k,p)+1

(
ψp(ei,i ⊗ 1)

)
+

f(k,l)∑
i=f(k,l−1)+1

ψl−1(ei,i ⊗ 1)

=
l−2∑
p=0

1kp+1 + ψl−1

(
f(k,l)∑

i=f(k,l−1)+1

ei,i ⊗ 1

)
. (?)

As ψl−1 : Mkl−1 ⊗On →M1 ⊗On is also an isomorphism, we have

ψl−1

(
f(k,l)∑

i=f(k,l−1)+1

ei,i ⊗ 1

)
= ψl−1(1kl−1) = 1k0 = e1,1 ⊗ 1.

Thus, continuing from (?),

f(k,l)∑
i=1

U∗i Ui =

l−2∑
p=0

1kp+1 + ψl−1

(
f(k,l)∑

i=f(k,l−1)+1

ei,i ⊗ 1

)

=

l−2∑
p=0

f(k,p+1)∑
i=f(k,p)+1

(
ei,i ⊗ 1

)
+ e1,1 ⊗ 1

=

f(k,l)∑
i=f(k,1)+1

(
ei,i ⊗ 1

)
+ e1,1 ⊗ 1

= 1f(k,l).

Relations (4) and (5) follow directly from ψ0 : M1 ⊗ On → Mk ⊗ On being an isomorphism

and the defining relations of On, but we shall check both to be thorough. Let i, j ∈ {1, . . . , n}.
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Then

V ∗i Vj = ψ0(e1,1 ⊗ s∗i )ψ0(e1,1 ⊗ sj) = ψ0(e1,1 ⊗ s∗i sj) =


ψ0(e1,1 ⊗ 1) if i = j

ψ0(0) if i 6= j.

Since ψ0(e1,1 ⊗ 1) = D1 = U1, the elements V1, . . . , Vn satisfy relation (4).

Lastly, relation (5) follows from the calculation

n∑
i=1

ViV
∗
i =

n∑
i=1

ψ0(e1,1 ⊗ si)ψ0(e1,1 ⊗ si)∗ = ψ0

(
e1,1 ⊗

n∑
i=1

sis
∗
i

)
= ψ0(e1,1 ⊗ 1) = U1.

Therefore there exists a unique endomorphism ϕ of Mn−1 ⊗ On such that ϕ(e1,i ⊗ 1) = Ui

for all i ∈ {1, . . . , f(k, l)} and ϕ(e1,1 ⊗ sj) = Vj for all j ∈ {1, . . . , n}. We claim that ϕ is an

automorphism. Given that ϕ is nonzero and the matrix algebra Mf(k,l) ⊗ On is simple, we know

that ϕ is injective. In order to show that ϕ is surjective and thus bijective, we need only show that

the generating set

{
e1,i ⊗ 1: i ∈ {1, . . . , f(k, l)}

}
∪
{
e1,1 ⊗ sj : j ∈ {1, . . . , n}

}
is contained within the image of ϕ.

We begin by showing e1,i⊗ 1 ∈ Im(ϕ) for all i ∈ {1, . . . , n− 1}. This is easily shown once we

know that e1,2 ⊗ 1 is in the image of ϕ. Recall that

f(k,l)∑
i=f(k,l−1)+1

U∗i Ui =

f(k,l)∑
i=f(k,l−1)+1

k∑
α=1

e1,1 ⊗ w∗i,αwi,α = e1,1 ⊗ 1,

so
f(k,l)∑

i=f(k,l−1)+1

k∑
α=1

w∗i,αwi,α = 1.

We know that Mk⊗On ⊂ Im(ϕ) because ψ0 is surjective, so the sum
∑k

α=1 e1+α,2⊗wi,α is in the
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image of ϕ for all i ∈ {f(k, l − 1), . . . , f(k, l)}. Hence

f(k,l)∑
i=f(k,l−1)+1

(
U∗i

k∑
α=1

eα+1,2 ⊗ wi,α

)

=

f(k,l)∑
i=f(k,l−1)+1

(
k∑

α=1

e1,α+1 ⊗ w∗i,α

)(
k∑

α=1

eα+1,2 ⊗ wi,α

)

=

f(k,l)∑
i=f(k,l−1)+1

k∑
α=1

e1,2 ⊗ w∗i,αwi,α

= e1,2 ⊗
f(k,l)∑

i=f(k,l−1)+1

k∑
α=1

w∗i,αwi,α

= e1,2 ⊗ 1

is in the image of ϕ.

Now let i ∈ {3, . . . , f(k, l)}. Then there exists p ∈ {1, . . . , l − 1} such that f(k, p) + 1 ≤

f(k, p + 1) and unique integers q and r such that i − 1 = qk + r and 0 < r ≤ k. We know

q < f(k, l − 1), as q ≥ f(k, l − 1) implies

qk + r ≥ f(k, l − 1) · k + r = f(k, l)− 1 + r ≥ f(k, l) > i− 1.

Thus

ϕ(e1,q+1 ⊗ 1) =
k∑

α=1

eα+1,kq+α+1 ⊗ 1.

Surjectivity of ψ0 implies there exists ai ∈ On such that

ϕ(e1,1 ⊗ ai) = ψ0(e1,1 ⊗ ai) = e2,r+1 ⊗ 1.
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Therefore

(e1,2 ⊗ 1)ϕ(e1,1 ⊗ ai)ϕ(e1,q+1 ⊗ 1) = (e1,2 ⊗ 1)(e2,r+1 ⊗ 1)

(
k∑

α=1

eα+1,qk+α+1 ⊗ 1

)

= (e1,2 ⊗ 1)(e2,qk+r+1 ⊗ 1)

= (e1,2 ⊗ 1)(e2,i ⊗ 1)

= e1,i ⊗ 1

is an element of Im(ϕ).

We now need only show that e1,1⊗sj ∈ Im(ϕ) for all j ∈ {1, . . . , n}. Surjectivity of ψ0 implies

that there exists bj ∈ On for each j ∈ {1, . . . , n} such that

ϕ(e1,1 ⊗ bj) = ψ0(e1,1 ⊗ bj) = e2,2 ⊗ sj .

Thus

(e1,2 ⊗ 1)ϕ(e1,1 ⊗ bj)(e1,2 ⊗ 1)∗ = (e1,2 ⊗ 1)(e2,2 ⊗ sj)(e2,1 ⊗ 1) = e1,1 ⊗ sj

is in the image of ϕ for all j ∈ {1, . . . , n}. Hence ϕ is an automorphism.

A slight modification of the above proof shows that Theorem 2.4 holds over Mf(l)(F )⊗Ln(F )

as well.

2.3 Observing the order requirement

Under special circumstances, we can choose an isomorphism ψ0 : M1 ⊗ On → Mk ⊗ On (which

can be regarded as choosing a set of Vj) and a set of Ui for i ∈ {f(k, l − 1) + 1, . . . , f(k, l)} in

the proof of Theorem 2.4 so that the resulting automorphism ϕ has order l. One such circumstance

arises when n = kl = (k − 1)f(k, l), and we will assume the following notation for the remainder

of this section.

Notation 2.7. Let k and l be integers greater than 1 and set n = kl.

We will henceforth assume the values of k and l are fixed. The section below defines 6 new
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integer functions, each depending on our choice of k and l in some way, and, if each of these

dependencies were acknowledged, most mathematical expressions would be bloated by an excessive

quantity of k’s and l’s that hinder rather than assist the reader. As a result, we redefine f to only

depend on its second variable:

Notation 2.8. In the following section, we let f refer to a function on the positive integers given by

f(p) =

p−1∑
i=0

ki.

This was formerly written as f(k, p), and we omit the k for convenience of notation.

The reader will only be reminded of the above notation in major theorems and definitions; in

lemmas and discussions, n, k, l, and f will be used without reference.

We now introduce the first of the 3 integer functions that allow us to construct this family of

special automorphisms.

Definition 2.9. Let n, k, and l be as in Notation 2.7 and let f be as in Notation 2.8. Define three

integer functions σ, λ, and µ by

σ(i) = k
(
i− f(l − 1)− 1),

λ(j) =

⌊
j

kl−1

⌋
,

and µ(j) = k(j mod kl−1).

We break up the main result into two parts: first, that the proposed formula defines a homomor-

phism which induces the automorphism [1] 7→ k · [1] on K0; and second, that this homomorphism

is an automorphism of order l.

Theorem 2.10. Let n, k, and l be as in Notation 2.7 and let f be as in Notation 2.8. For all

i ∈ {f(0), . . . , f(l − 1)}, set

Ui =

k−1∑
β=0

eβ+f(1)+1,k(i−1)+β+f(1)+1 ⊗ 1; (2.1)
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for all i ∈ {f(l − 1) + 1, . . . , f(l)}, set

Ui =
k−1∑
β=0

eβ+f(1)+1,1 ⊗ s∗σ(i)+β+1; (2.2)

and for all j ∈ {0, . . . , n− 1}, set

Vj+1 =
k−1∑
β=0

eλ(j)+f(1)+1,β+f(1)+1 ⊗ sµ(j)+β+1. (2.3)

Then there exists a unique homomorphism ϕ : Mf(l)⊗On →Mf(l)⊗On such that ϕ(e1,i⊗1) = Ui

and ϕ(e1,1 ⊗ sj+1) = Vj+1 for all appropriate values of i and j. Moreover, ϕ∗([1]) = k · [1].

Although we could derive that ϕ is a homomorphism by using the construction from the proof of

Theorem 2.4 and a particular choice of ψ0 and Ui, it happens to be easier to directly apply Theorem

1.8. The connection between Theorems 2.4 and 2.10 will be discussed after proving that ϕ has order

l.

Proof of Theorem 2.10. To show there is a unique homomorphism ϕ such that ϕ(e1,i⊗1) = Ui and

ϕ(e1,1 ⊗ sj+1) = Vj+1 for all i and j, we must verify that

UiUj = 0 if i > 1 (1)

UiU
∗
j =


U1 if i = j

0 if i 6= j

(2)

f(l)∑
i=1

U∗i Ui = 1f(l) (3)

V ∗i+1Vj+1 =


U1 if i = j

0 if i 6= j.

(4)

n−1∑
j=0

Vj+1V
∗
j+1 = U1 (5)

for all appropriate values of i and j.

We begin by proving relation (1). Let i, j ∈ {1, . . . , f(k, l)} and suppose i > 1. If i ≤
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f(k, l − 1), then

Ui =

k−1∑
α=0

eα+f(1)+1,k(i−1)+α+f(1)+1 ⊗ 1

and k(i − 1) + α + f(1) + 1 > β + f(1) + 1 for all α, β ∈ {0, . . . , k − 1}. Alternatively, if

i > f(k, l − 1), then

Ui =
k−1∑
α=0

eα+f(1)+1,1 ⊗ s∗σ(i)+α+1

and 1 < β + f(1) + 1 for all β ∈ {0, . . . , k − 1}. Thus

Ui

k−1∑
β=0

eβ+f(1)+1,k(i−1)+β+f(1)+1 ⊗ 1 = 0

and

Ui

k−1∑
β=0

eβ+f(1)+1,1 ⊗ s∗σ(i)+β+1 = 0

by definition of matrix unit multiplication. Thus UiUj = 0, proving relation (1).

We move on to proving relation (2). There are three cases to consider: one in which 1 ≤ i, j ≤

f(l − 1), another where 1 ≤ i ≤ f(l − 1) < j, and one where f(l − 1) < i, j < f(l). The case

when 1 ≤ j < f(l − 1) ≤ i will be covered by the second case.

Case 1: 1 ≤ i, j ≤ f(l − 1)

In this case, the product of Ui and U∗j is

UiU
∗
j =

(
k−1∑
α=0

eα+f(1)+1,k(i−1)+α+f(1)+1 ⊗ 1

)(
k−1∑
β=0

ek(j−1)+β+f(1)+1,β+f(1)+1 ⊗ 1

)

If i 6= j, then k(i− 1) +α 6= k(j − 1) + β for all α, β ∈ {0, . . . , k− 1} since |i− j| · k ≥ k. Thus

i 6= j implies UiU∗j = 0 by definition of matrix unit multiplication.

If instead i = j, then k(i − 1) + α = k(j − 1) + β for α, β ∈ {0, . . . , k − 1} precisely when

α = β, implying

UiU
∗
j =

k−1∑
α=0

eβ+f(1)+1,β+f(1)+1 ⊗ 1 = U1.

Thus relation (2) holds in case 1.

Case 2: 1 ≤ i ≤ f(l − 1) < j
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In this case, the product of Ui and U∗j is

UiU
∗
j =

(
k−1∑
α=0

eα+f(1)+1,k(i−1)+α+f(1)+1 ⊗ 1

)(
k−1∑
β=0

e1,β+f(1)+1 ⊗ sσ(j)+β+1

)
.

Since k(i − 1) + α ≥ 0, matrix multiplication implies that UiU∗j = 0. Taking the adjoint of both

sides, we see that UjU∗i = 0, proving the analogous case 1 ≤ j < kl−1 ≤ i.

Case 3: f(l − 1) < i, j ≤ f(l)

In this case, the product of Ui and U∗j is

UiU
∗
j =

(
k−1∑
α=0

eα+f(1)+1,1 ⊗ s∗σ(i)+α+1

)(
k−1∑
β=0

e1,β+f(1)+1 ⊗ sσ(j)+β+1

)

=

k−1∑
α,β=0

eα+f(1)+1,β+f(1)+1 ⊗ s∗σ(i)+α+1sσ(j)+β+1 (?)

If i 6= j, then |σ(i)− σ(j)| ≥ k, so σ(i) + α 6= σ(j) + β for all α, β ∈ {0, . . . , k− 1}. Thus i 6= j

implies UiU∗j = 0 by the first relation of On.

On the other hand, if i = j, then σ(i) = σ(j) and σ(i) + α = σ(j) + β precisely when α = β,

so

s∗σ(i)+α+1sσ(j)+β+1 = δα,β.

Continuing from (?), we then have

UiU
∗
j =

k−1∑
α=0

eα+f(1)+1,α+f(1)+1 ⊗ 1 = U1.

Since the above three cases exhaust all possible choices of i, j ∈ {1, . . . , f(l − 1)}, this proves

relation (2) for all such i and j.

There are a few preparatory calculations that we must perform to prove relation (3). As in

relation (2), these calculations largely split between the case i ≤ f(l − 1) and i > f(l − 1).

Regardless of which of these inequalities hold, we prefer to express all i ∈ {1, . . . , f(l)} as a sum

1 + f(p) + j for some unique pair of integers p ∈ {0, . . . , l − 1} and j ∈ {0, . . . , kp − 1}.
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If i ≤ f(l − 1) (or equivalently p ≤ l − 2), then

U∗i Ui =

(
k−1∑
α=0

ek(i−1)+α+f(1)+1,α+f(1)+1 ⊗ 1

)(
k−1∑
α=0

eα+f(1)+1,k(i−1)+α+f(1)+1 ⊗ 1

)

=

k−1∑
α=0

ek(i−1)+α+f(1)+1,k(i−1)+α+f(1)+1 ⊗ 1 (2.4)

by (2.1). Note that

k(i− 1) + f(1) + 1 = k · f(p) + kj + f(1) + 1 = 1 + f(p+ 1) + kj, (2.5)

so we can uniquely express any integer between 1+f(p+1) and f(p+2) as k(i−1)+f(1)+α+1

for some i ∈ {1 + f(p), . . . , f(p+ 1)} and some α ∈ {0, . . . , k − 1}. Thus, if p ≤ l − 2, then

f(p+1)∑
i=1+f(p)

U∗i Ui =
kp−1∑
j=0

U∗1+f(p)+jU1+f(p)+j

=
kp−1∑
j=0

k−1∑
α=0

e1+f(p+1)+kj+α,1+f(p+1)+kj+α ⊗ 1

=

f(p+2)∑
i=1+f(p+1)

ei,i ⊗ 1,

where we combined (2.4) and (2.5) in the second step.

If instead f(l − 1) < i (or equivalently p = l − 1), then

U∗i Ui =

(
k−1∑
α=0

e1,β+f(1)+1 ⊗ sσ(i)+β+1

)(
k−1∑
α=0

eβ+f(1)+1,1 ⊗ s∗σ(i)+β+1

)

=
k−1∑
α=0

e1,1 ⊗ sσ(i)+β+1s
∗
σ(i)+β+1 (2.6)

by (2.2). Note that

σ(i) + 1 = σ
(
1 + f(l − 1) + j

)
+ 1 = kj + 1. (2.7)

Thus the division algorithm implies that every integer between 0 and n− 1 is expressible as a sum

σ(i) + r+1 = kj + r for unique integers i ∈ {1+ f(l− 1), . . . , f(l)}, j ∈ {0, . . . , kl−1 − 1} and
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r ∈ {0, . . . , k − 1}. Therefore

f(l)∑
i=1+f(l−1)

U∗i Ui =

kl−1−1∑
j=0

U∗1+f(l−1)+jU1+f(l−1)+j

=
kl−1−1∑
j=0

k−1∑
α=0

e1,1 ⊗ skj+α+1s
∗
kj+α+1

=

n−1∑
j=0

e1,1 ⊗ sj+1s
∗
j+1

= e1,1 ⊗ 1,

where we combined (2.6) and (2.7) in the second step and used the second relation ofOn in the last

step. Thus

f(l−1)∑
i=1

U∗i Ui =
l−2∑
p=0

kp−1∑
j=0

U∗1+f(p)+jU1+f(p)+j +
kl−1∑
j=0

U∗1+f(l−1)+jU1+f(l−1)+j

=

l−2∑
p=0

f(p+2)∑
i=1+f(p+1)

ei,i ⊗ 1 + e1,1 ⊗ 1

=

l−1∑
p=1

f(p+1)∑
i=1+f(p)

ei,i ⊗ 1 + e1,1 ⊗ 1

=

l−1∑
p=0

f(p+1)∑
i=1+f(p)

ei,i ⊗ 1

=

f(l)∑
i=1

ei,i ⊗ 1 = 1f(l),

proving relation (3).

For relation (4), let i, j ∈ {0, . . . , n− 1}. As 0 ≤ i, j < kl = n, it follows that both i and j can

be expressed using no more than l − 1 digits in base-k. Therefore i can be uniquely expressed as

the sum λ(i)kl−1 + µ(i)/k and likewise for j, so i = j if and only if λ(i) = λ(j) and µ(i) = µ(j).
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Thus i = j implies that

V ∗i+1Vj+1 =

(
k−1∑
α=0

eα+2,λ(i)+2 ⊗ sµ(j)+α+1

)(
k−1∑
β=0

eλ(j)+2,β+2 ⊗ sµ(j)+β+1

)

=
k−1∑
α,β=0

eα+2,β+2 ⊗ s∗µ(i)+α+1sµ(j)+β+1 (2.8)

Since µ(i) = µ(j), the indices µ(i) + α + 1 and µ(j) + β + 1 coincide exactly when α = β.

Continuing from (2.8), we have

V ∗i+1Vj+1 =

k−1∑
β=0

eβ+2,β+2 ⊗ 1

by the first relation of On.

On the other hand, if i 6= j, then either λ(i) 6= λ(j), in which case V ∗i+1Vj+1 = 0 by matrix unit

multiplication, or λ(i) = λ(j), but µ(i)/k 6= µ(j)/k. Thus |µ(i)− µ(j)| ≥ k, so

s∗µ(i)+α+1sµ(j)+β+1 = 0

for all α, β ∈ {0, . . . , k − 1} by relation 1 of On. Continuing from (2.8) again, we have

Vi+1V
∗
j+1 =

k−1∑
α,β=0

eα+2,β+2 ⊗ 0 = 0,

proving relation (4).

Finally, we check that relation (5) holds. Observe that each element j ∈ {0, . . . , n− 1} can be

uniquely expressed as a sum qkl−1 + r for some q ∈ {0, . . . , k− 1} and r ∈ {0, . . . , kl−1}, as well

as a sum kr + β for some r ∈ {0, . . . , k − 1} and β ∈ {0, . . . , k − 1}. The first sum yields the

identity
n−1∑
j=0

Vj+1V
∗
j+1 =

k−1∑
q=0

kl−1−1∑
r=0

Vqkl−1+r+1V
∗
qkl−1+r+1, (2.9)
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whereas the second sum yields the identity

kl−1−1∑
r=0

k−1∑
β=0

skr+β+1s
∗
kr+β+1 =

n−1∑
j=0

sj+1s
∗
j+1 = 1 (2.10)

via the second relation of On. Then, using (2.9) and (2.3) in the first step and (2.10) in the third,

n−1∑
j=0

Vj+1V
∗
j+1 =

k−1∑
q=0

kl−1−1∑
r=0

(
k−1∑
β=0

eq+2,β+2 ⊗ skr+β+1

)(
k−1∑
β=0

eβ+2,q+2 ⊗ s∗kr+β+1

)

=
k−1∑
q=0

kl−1−1∑
r=0

k−1∑
β=0

eq+2,q+2 ⊗ skr+β+1s
∗
kr+β+1

=

k−1∑
q=0

eq+2,q+2 ⊗ 1 = U1.

Thus relation (5) also holds, and there exists a unique homomorphism ϕ such that ϕ(e1,i⊗ 1) = Ui

for all i and ϕ(e1,1 ⊗ sj+1) = Vj+1 for all j.

That ϕ∗([1]) = k · [1] follows from the fact that

[ϕ(e1,1 ⊗ 1)] = [U1] =

[
k−1∑
β=0

eβ+f(1)+1,β+f(1)+1 ⊗ 1

]
= k · [1].

The relations we chose to defineMf(l)(C) imply that the above theorem holds overMf(l)(K)⊗

Ln(K) as well, where we replace each occurrence of s∗i in the formula for ϕ with ti.

Theorem 2.11. Let k, l, and n be as in Notation 2.7 and let f be as in Notation 2.8. The homomor-

phism ϕ : Mf(l) ⊗ On → Mf(l) ⊗ On defined in Theorem 2.10 is an automorphism and has order

l.

Showing that ϕl is the identity map requires the definition of 3 more integer functions to help

us describe where ϕm sends the generators of Mf(l) ⊗ On for arbitrary m ∈ {1, . . . , l}. There are

also several (perhaps confusing) choices of notation in the formula for ϕ which were made in the

interest of calculating ϕm, which shall now be explained

Firstly, the choice to index the sums from 0 to k − 1 rather than from 1 to k is one which better

fits how the β indices are used in the calculation of ϕm. Each application of ϕ (up to a a point) will
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multiply the previous indices by k and add another index to the sum, so a total of m applications

will yield a sum over m indices β0, . . . , βm−1, usually of the form

β0k
m−1 + β1k

m−2 + · · ·+ βm−2k + βm−1.

This provides the motivation for our fourth (family of) integer function(s):

Definition 2.12. For each m ∈ {0, . . . , l − 1}, define a function Fm : {0, . . . , k − 1}m → Z such

that

Fm(β0, . . . , βm−1) =
m−1∑
i=0

βm−i−1k
i

We choose to denote these functions by Fm as they can be thought of a generalization of f .

Note that, just as

f(m+ 1) =

m+1∑
i=1

ki + 1 = k · f(m) + f(1), (2.11)

for all m, we also have a recursive relation

Fm+1(β0, . . . , βm) =
m∑
i=1

βm−ik
i + βm = k · Fm(β0, . . . , βm−1) + βm (2.12)

that holds for all m and β0, . . . , βm ∈ {0, . . . , k − 1}.

Although the βi are the independent variables in the function Fm, it makes more sense for

our purposes to consider β0, . . . , βm−1 as coefficients of a polynomial, or as digits in the base-k

representation of an integer. This last interpretation makes clear that Fm is a bijection between

{0, . . . , k − 1}m and {0, . . . , km − 1}, as each number in the latter range has a unique base-k

representation (β0 . . . βm−1)k. Indexing from 1 to k would shift the range up by 1 and result in

mathematically equivalent expressions, but would also render the base-k analogy less useful and

confuse the purpose of Fm.

Secondly, the expression f(1) + 1 = k0 + 1 = 2 appears in the formula for ϕ in several places,

with no clear reason as to why these are not replaced by 2’s. This choice was also made to highlight

the similarities between the formula for ϕ and the formula for ϕm, as these f(1) terms will often be

multiplied by k and then added to another f(1) term, resulting in f(2). Consequently, ϕm(e1,i⊗ 1)

will have an f(m) term in one of its indices regardless of i and m. Several formulas also involve
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subtracting 1 from an index, and the differentiation between f(m) and 1 makes clear that the f(m)

term is of greater significance than the spare 1.

With these explanations out of the way, we turn our attention to the indices i and j themselves.

We require specific data about i and j in order to make sense of σ(i), λ(j), and µ(j), as well as

expressions derived from repeated applications of these functions. For example, if i ∈ {f(l − 1) +

1, . . . , f(l)}, then ϕ2(e1,i⊗ 1) involves the terms λ(σ(i)+β0) and µ(σ(i)+β0). We thus settle on

the following convention whenever we use terms i and j:

Notation 2.13. Let j ∈ {0, . . . , n−1}. Then there exists unique integers a0, . . . , al−1 ∈ {0, . . . , k−

1} such that

j =
l−1∑
x=0

axk
x = (al−1al−2 . . . a0)k. (2.13)

For all i ∈ {1, . . . , f(l)}, there exists a unique integer p ∈ {0, . . . , l− 1} such that f(p) + 1 ≤ i ≤

f(p+1). The difference between i and f(p) + 1 is denoted by an integer j ∈ {0, . . . , kp− 1} as in

(2.13), so that

i = 1 + f(p) + j = 1 + f(p) +

p−1∑
x=0

axk
x, (2.14)

where the last l − p terms of j are omitted as j < kp implies that ax = 0 for x ≥ p.

Here j serves double duty as we want to consider the base-k representation of i− 1− f(p) for

calculating ϕm(e1,i ⊗ 1) as well as the base-k representation of an integer between 0 and n− 1 for

calculating ϕm(e1,1 ⊗ sj). The author hopes that the reader will find this irksome convention more

convenient than the usage of diacritics, as we are quickly running out of letters in the alphabet.

Letting j be as in Notation 2.13, one sees that

λ(j) = al−1 and µ(j) =

l−1∑
x=1

ax−1k
x,

giving us a much better understanding of what λ and µ are doing: λ shifts j right l−1 times, whereas

µ cuts off the top digit of j and then left-shifts the resulting number once. Thus the (p−m)-th digit

of j is equal to (λ ◦ µm−1)(j).

The notation for i is a bit less intuitive, but can be understood by considering the formula for ϕ.

If i ≤ f(l − 1), then one uses (2.1) to calculate ϕ(e1,i ⊗ 1). The matrix units in ϕ(e1,i ⊗ 1) then
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contain the index

k(i− 1) + f(1) + β0 + 1 = k · f(p) + k

p−1∑
x=0

axk
x + f(1) + F1(β0) + 1

= 1 + f(p+ 1) +

p∑
x=1

ax−1k
x + F1(β0).

If p + 1 < l − 1, then the above expression would still be less than or equal to f(l − 1) because

F1(β0) < k and

1 + f(p+ 1) +

p∑
x=1

ax−1k
x ≤ 1 + f(p+ 1) + kp+1 − k

= f(p+ 2)− (k − 1)

≤ f(l − 1)− (k − 1).

The equality in the second line uses the fact that j ≤ kp− 1. Assuming the above inequalities hold,

then ϕ3(e1,i ⊗ 1) would contain the index

k
(
k(i− 1) + F1(β0) + f(1)

)
+ β1 + f(1) + 1

= k2(i− 1) + kF1(β0) + kf(1) + β1 + f(1) + 1

= k2(i− 1) + F2(β0, β1) + f(2) + 1

= k2f(p) + k2
p∑

x=0

axk
x + F2(β0, β1) + f(2) + 1

= 1 + f(p+ 2) +

p∑
x=2

ax−2k
x + F2(β0, β1)

and so on until km(i− 1) +Fm(β) + f(d) finally exceeds f(l− 1). As these indices all contain an

Fm(β0, . . . , βm−1) term, we find it useful to shorten (β0, . . . , βm−1) to simply β where possible.

Whenever another βm index is added, we let (β, βm) denote (β0, . . . , βm−1, βm) to show that the

m-tuple has changed into an (m+ 1)-tuple.

We must next ascertain when km(i− 1) + Fm(β) + f(m) ≥ f(l − 1), or, more precisely, find

the minimal integer m satisfying km(i− 1) + Fm(β) + f(d) ≥ f(l − 1) for all β.

Lemma 2.14. If i, j, and p are as in Notation 2.13, then the difference d = l− 1− p is the minimal
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integer satisfying

f(l − 1) + 1 ≤ km(i− 1) + Fm(β) + f(m) + 1 ≤ f(l)

for all β = (β0, . . . , βm−1) ∈ {0, . . . , k − 1}m.

Proof. We first verify that d satisfies f(l − 1) + 1 ≤ kd(i− 1) + f(d) + 1 ≤ f(l). Observe that

kdf(p) + f(d) =

p−d−1∑
x=d

kx +
d−1∑
x=0

kx = f(p− d) = f(l − 1).

and

kd
(
f(p+ 1)− 1

)
+ f(d) + 1 = f(p+ d+ 1)− kd + 1 ≤ f(l).

The first inequality now follows from the assumption that f(p) + 1 ≤ i and the second inequality

from the assumption that i ≤ f(p+ 1). As 0 ≤ Fd(β) < kd ≤ kl−1 for all β, it follows that

f(l − 1) + 1 ≤ kd(i− 1) + Fd(β) + f(d) + 1 ≤ f(l).

Now suppose that m < d. As f is strictly increasing, we have

f(l − 1)−
(
km
(
f(p+ 1)− 1

)
+ f(m) + 1

)
= f(p+ d)− f(p+m+ 1) + km − 1 ≥ km − 1.

The fact f(l− 1) differs from km(i− 1)+ f(m)+ 1 by at least km− 1 means that the Fm(β) term

is curiously irrelevant in determining whether km(i− 1)+Fm(β)+ f(m)+1 is less than f(l− 1);

the only relevant datum is the integer m. This proves the lemma.

We have now determined that ϕd(e1,i ⊗ 1) contains a term of the form

ϕ(e1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1)
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and that this term ought to be calculated using (2.2). The definition of σ implies that

σ
(
kd(i− 1) + Fd(β) + f(d) + 1

)
+ βd + 1

= k
(
1 + f(l − 1) + kdj + Fd(β)− f(l − 1)− 1

)
+ βd + 1

=

p+d∑
x=d+1

ax−d−1k
x + k · Fd(β) + βd+1 + 1

=

l−1∑
x=d+1

ax−d−1k
x + Fd+1(β, βd) + 1.

As this is an index of an sj+1 term, we now know ϕd+2(e1,i ⊗ 1) contains terms of the form

ϕ(e1,1 ⊗ skd+1j+Fd+1(β,βd)+1)
∗. The next intuitive step is to calculate λ(·) and µ(·) + βd+1 of the

above expression minus 1. The definitions of λ and µ imply that

λ
(
σ
(
kd(i− 1) + Fd(β) + f(d) + 1

)
+ βd

)
= λ

(
l−1∑

x=d+1

ax−d−1k
x + Fd+1(β, βd) + 1

)

= al−1−d−1 = ap−1

and

µ
(
σ
(
kd(i− 1) + Fd(β) + f(d) + 1

)
+ βd

)
+ βd+1

= µ

(
l−1∑

x=d+1

ax−d−1k
x + Fd+1(β, βd) + 1

)
+ βd+1

=
l−1∑

x=d+2

ax−d−2k
x + k · Fd+1(β, βd) + βd+1

=

l−1∑
x=d+2

ax−d−2k
x + Fd+2(β, βd+1).

At long last we are able to see a sliver of the picture with some clarity. Repeated applications of

µ(·) + βm+1 will eventually yield a term e1,1⊗ sFl(β)+1 that ranges from 1 to n and will likely (the

author is cheating with hindsight) cancel out with e1,1 ⊗ s∗Fl(β)+1 terms to form a single e1,1 ⊗ 1

term by one of the defining relations of On. Applying λ to indices like kdj + Fd+1(β, βd) + 1 or

µ(kdj + Fd+1(β, βd) + 1) peels off the top digit of j, which is then multiplied by k as dictated by
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(2.1). This process eventually yields a “reconstructed” copy of e1,j+f(p)+1 ⊗ 1 = e1,i ⊗ 1.

These claims might seem speculative at the moment, but will soon be substantiated by rigor-

ous proof. The point of all these calculations was to motivate the definitions of the last 2 integer

functions.

Definition 2.15. Let i, j, and p be as expressed in Notation 2.13. Define a function Aj : {1, . . . , l}

→ Z by

Aj(m) =

m−1∑
x=0

al−m+xk
x = al−1k

m−1 + · · ·+ al−m+1k + al−m.

Furthermore, for each m ∈ {1, . . . , p}, define a function Sj,m : {0, 1, . . . , k − 1}m → Z such that

Sj,m(β0, . . . , βm−1) =

l−1∑
j=m

aj−mk
j +

m−1∑
j=0

βm−j−1k
j

= al−m−1k
p−1 + · · ·+ a0k

m + Fm(β0, . . . , βm−1).

As with Fm, we will often shorten Sj,m(β0, . . . , βm−1) to Sj,m(β) to save space.

One should see some similarities between the definitions of Aj and Sj,m and the calculations

involving λ and µ above. The function Aj models the reconstruction of j via repeated applications

of λ and µ to kdj+Fd+1(β)+1, and Sj,m models how the e1,1⊗skdj+Fd(β)+1 terms are eventually

replaced by e1,1⊗ sFl(β) terms through repeated applications of µ(·)+βm. Wordy explanations are

unlikely to satisfy any unresolved confusion at this point, so we shall henceforth stick to calculations

and terse descriptions.

Both Aj and Sj,m possess recursive properties that appear several times in the proof that ϕ has

order l, so we take one last detour before we break up the proof of Theorem 2.11 into two more

manageable lemmas.

Lemma 2.16. Let i and p be as expressed in Notation 2.13, let m ∈ {1, . . . , p− 1}, and let Aj and

Sj,m be as in Definition 2.15. Then

Aj(m+ 1) = k ·Aj(m) + ap−m−1 (2.15)

and

Sj,m+1(β, βm) = µ(Sj,m(β)) + βm, (2.16)
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for all β = (β0, . . . , βm−1) ∈ {0, 1, . . . , k − 1}m and βm ∈ {0, 1, . . . , k − 1}.

Proof. Let m ∈ {1, . . . , l − 1}. Both properties follow directly from Definition 2.15, as shall soon

be made apparent. For the first equation, we calculate:

k·Aj(m)+ap−m−1 =
m−1∑
j=0

ap−m+jk
j+1+ap−m−1 =

m∑
j=1

ap−(m+1)+jk
p+ap−(m+1) = Aj(m+1).

And for the second equation we calculate:

µ
(
Sj,m(β)

)
+ βm =

p−2∑
j=m

aj−mk
j+1 + k ·Km(β) + βm + 1

=

p−1∑
j=m+1

aj−(m+1)k
j +Km+1(β, βm) + 1

= Sj,m+1(β, βm).

This completes the proof.

We now have the necessary tools to begin describing where ϕm sends e1,i⊗1 for various values

of m.

Lemma 2.17. Let i, j, and p be as in Notation 2.13, let d be as in Lemma 2.14, and let ϕ be as in

Theorem 2.10. Then for m ∈ {1, . . . , d}, we have

ϕm(e1,i ⊗ 1) =
k−1∑

β0,...,βm−1=0

eFm(β)+f(m)+1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1,

and for m ∈ {d+ 1, . . . , l − 1}

ϕm(e1,i ⊗ 1) =

k−1∑
β0,...,βm−1=0

eFm(β)+f(m)+1,Aj(m)+f(m−d−1)+1 ⊗ s∗Sj,m(β)+1

Proof. We prove both assertions by induction. Suppose for the first assertion that d > 0 or, equiv-

alently, that i ≤ f(l − 1). Then the base case of the first assertion follows directly from equation

(2.1) in the definition of ϕ in Theorem 2.10.
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Now suppose that, for some m ∈ {1, . . . , d− 1}, we have

ϕm(e1,i ⊗ 1) =
k−1∑

β0,...,βm−1=0

eFm(β)+f(m)+1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1.

We now set out to calculate

ϕ(eFm(β)+f(m)+1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)

= ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗ϕ(e1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)

for a fixed, but arbitrary m-tuple β. The proof of Lemma 2.14 shows that both Fm(β) + f(m) + 1

and km(i− 1) + Fm(β) + f(m) + 1 are less than f(l − 1). Equation (2.1) implies that

ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗ =

k−1∑
βm=0

ek(Fm(β)+f(m))+βm+f(1)+1,βm+f(1)+1 ⊗ 1

=

k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,βm+f(1)+1 ⊗ 1. (2.17)

The simplification of the left index follows from equations (2.11) and (2.12). Likewise, we have

ϕ(e1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1) =

k−1∑
βm=0

eβm+f(1)+1,k(km(i−1)+Fm(β)+f(m))+βm+f(1)+1 ⊗ 1

=

k−1∑
βm=0

eβm+f(1)+1,km+1(i−1)+Fm+1(β,βm)+f(m+1)+1 ⊗ 1

(2.18)
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from (2.1), (2.11), and (2.12). The product of (2.17) and (2.18) is

ϕ(eFm(β)+f(m)+1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)

= ϕ(e1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)∗ϕ(e1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)

=

(
k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,βm+f(1)+1 ⊗ 1

)
(

k−1∑
βm=0

eβm+f(1)+1,km+1(i−1)+Fm+1(β,βm)+f(m+1)+1 ⊗ 1

)

=
k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,km+1(i−1)+Fm+1(β,βm)+f(m+1)+1 ⊗ 1.

Hence

ϕm+1(e1,i ⊗ 1) =

k−1∑
β0,...,βm−1=0

ϕ(eFm(β)+f(m)+1,km(i−1)+Fm(β)+f(m)+1 ⊗ 1)

=
k−1∑

β1,...,βm=0

eFm+1(β,βm)+f(m+1)+1,km+1(i−1)+Fm+1(β,βm)+f(m+1)+1 ⊗ 1,

proving the first part of the lemma.

For the second part, we must consider two base cases, one where 0 < d < l − 1 and the first

assertion holds, and another where d = 0 and the first assertion is vacuous. The d = 0 base case

follows directly from equation (2.2) and the definitions of f , Fm, Aj , and Sj,m, from which we

derive the identities

f(1) = 1,

F1(β0) = β0,

Aj(1) = 0,

Sj,1(β0) = k
l−2∑
x=0

axk
x + F1(β0) =

l−1∑
x=1

axk
x + β0.
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Thus we need only consider the 0 < d < l − 1 base case, where we have

ϕd(e1,i ⊗ 1) =
k−1∑

β0,...,βd−1=0

eFd(β)+f(d)+1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1.

We set out to calculate

ϕ(eFd(β)+f(d)+1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1)

= ϕ(e1,Fd(β)+f(d)+1 ⊗ 1)∗ϕ(e1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1)

for a fixed, but arbitrary m-tuple β. As Fd(β) < kd for all β, we have

Fd(β) + f(d) + 1 ≤ kd − 1 + f(d) + 1 = f(d+ 1) ≤ f(l − 1).

Thus we reuse the result our previous calculation in equation (2.17) for ϕ(e1,Fd(β)+f(d)+1 ⊗ 1)∗.

Lemma 2.14 implies that f(l−1)+1 ≤ kd(i−1)+f(d)+1, so equation (2.2) provides the formula

for calculating ϕ(e1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1). Recall from our earlier calculations that

σ
(
kd(i− 1) + Fd(β) + f(d) + 1

)
+ βd =

l−1∑
x=d+1

ax−d−1k
x + Fd+1(β, βd)

= Sj,d+1(β, βd)

for all βd ∈ {0, . . . , k − 1}. Therefore equation (2.2) implies that

ϕ(e1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1) =

k−1∑
βd+1=0

eβd+1+f(1)+1,1 ⊗ sσ(kd(i−1)+Fd(β)+f(d)+1)+βm+1

=
k−1∑

βd+1=0

eβd+1+f(1)+1,1 ⊗ sSj,d+1(β,βd)+1. (2.19)
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Multiplying (2.17) and (2.19) yields

ϕ(eFd(β)+f(d)+1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1)

= ϕ(e1,Fd(β)+f(d)+1 ⊗ 1)∗ϕ(e1,kd(i−1)+Fd(β)+f(d)+1 ⊗ 1)

=

(
k−1∑
βd=0

eFd+1(β,βd)+f(d+1)+1,βd+f(1)+1 ⊗ 1

)
(

k−1∑
βd+1=0

eβd+1+f(1)+1,1 ⊗ sSj,d+1(β,βd)+1

)

=
k−1∑
βd=0

eFd+1(β,βd)+f(d+1)+1,1 ⊗ sSj,d+1(β,βd)+1.

We know f(0) = 0; that Aj(1) = al−1 = 0 as well follows from j < kl−1, which implies the

(l−1)-th digit of j in its base-k representation is 0. The above calculation thus proves the base case

of the second assertion.

Now suppose that, for some m ∈ {d+ 1, . . . , l − 2}, we have

ϕm(e1,i ⊗ 1) =

k−1∑
β0,...,βm−1=0

eFm(β)+f(m)+1,Aj(m)+f(m−d−1)+1 ⊗ s∗Sj,m(β)+1.

We aim to calculate

ϕ(eFm(β)+f(m)+1,Aj(m)+f(m−d−1)+1 ⊗ s∗Sj,m(β)+1)

= ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,m(β)+1)
∗ϕ(e1,Aj(m)+f(m−d−1)+1 ⊗ 1)

for fixed β. As m < l − 1 and Fm(β) < km, we have

Fm(β) + f(m) + 1 ≤ km − 1 + f(m) + 1 = f(m+ 1) ≤ f(l − 1),

so we ought to calculate ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗ using equation (2.1). Thus we may reuse (2.17)

again for ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗.

For Aj(m) + f(m − d − 1), recall that j < kp = kl−d−1 implies that ax = 0 for x ∈
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{l − d− 1, . . . , l − 1}. Hence Aj(m) < kl−d−1, so

Aj(m) + f(m− d− 1) < km−d−1 + f(m− d− 1) = f(m− d) ≤ f(p− 1) < f(l − 1).

Equations (2.1), (2.15), and (2.11) give us

ϕ(e1,Aj(m)+f(m−d−1)+1 ⊗ 1) =

k−1∑
βm=0

eβm+f(1)+1,k(Aj(m)+f(m−d−1))+βm+f(1)+1 ⊗ 1

=

k−1∑
βm=0

eβm+f(1)+1,k·Aj(m)+f(m−d)+βm+1 ⊗ 1. (2.20)

Before using equation (2.3) to calculate ϕ(e1,1⊗sSj,m(β)+1)
∗, recall that λ(Sj,m(β)) = al−m−1

and µ(Sj,m(β))+βm = Sj,m+1(β, βm). The first of these follows from the definition of λ and Sj,m

and the second comes from (2.16) in Lemma 2.16. Therefore

ϕ(e1,1 ⊗ sSj,m(β)+1)
∗ =

k−1∑
βm=0

eβm+f(1)+1,λ(Sj,m(β)+f(1)+1 ⊗ s∗µ(Sj,m(β)+βm+1

=
k−1∑
βm=0

eβm+f(1)+1,al−m−1+f(1)+1 ⊗ s∗Sj,m+1(β,βm)+1. (2.21)

Multiplying (2.17) and (2.21) together yields

ϕ(eFm(β)+f(m)+1,1 ⊗ s∗Sj,m(β)+1)

= ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,m(β)+1)
∗

=

(
k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,βm+f(1)+1 ⊗ 1

)
(

k−1∑
βm=0

eβm+f(1)+1,al−m−1+f(1)+1 ⊗ s∗Sj,m+1(β,βm)+1

)

=

k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,al−m−1+f(1)+1 ⊗ s∗Sj,m+1(β,βm)+1.
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Right-multiplying the above product with (2.20) results in the sum

ϕ(eFm(β)+f(m)+1,Aj(m−d−1) ⊗ s
∗
Sj,m(β)+1)

= ϕ(eFm(β)+f(m)+1,1 ⊗ s∗Sj,m(β)+1)ϕ(e1,Aj(m−d−1)+1 ⊗ 1)

=

(
k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,al−m−1+f(1)+1 ⊗ s∗Sj,m+1(β,βm)+1

)
(

k−1∑
βm=0

eβm+f(1)+1,k·Aj(m)+f(m−d)+βm+1 ⊗ 1

)

=

k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,k·Aj(m)+f(m−d)+al−m−1+1 ⊗ s∗Sj,m+1(β,βm)+1

=

k−1∑
βm=0

eFm+1(β,βm)+f(m+1)+1,Aj(m)+f(m−d)+1 ⊗ s∗Sj,m+1(β,βm)+1,

where the last step follows from (2.15) in Lemma 2.15. Hence

ϕm+1(e1,i ⊗ 1) =

k−1∑
β0,...,βm−1=0

ϕ(eFm(β)+f(m)+1,Aj(m) ⊗ s∗Sj,m(β)+1)

=
k−1∑

β0,...,βm=0

eFm+1(β,βm)+f(m+1)+1,Aj(m)+f(m−d)+1 ⊗ s∗Sj,m+1(β,βm)+1,

proving the second assertion and the lemma.

Lemma 2.17 allow us to calculate ϕl(e1,i⊗1), as we now have explicit formulas for ϕl−1(e1,i⊗

1) for all i. Before doing so, we prove the corresponding version of Lemma 2.17 for e1,1 ⊗ sj+1.

Lemma 2.18. Let j be as in Notation 2.13 and let ϕ be as in Theorem 2.10. Then

ϕm(e1,1 ⊗ sj+1) =

k−1∑
β0,...,βm−1=0

eAj(m)+f(m)+1,Fm(β)+f(m)+1 ⊗ sSj,m(β)+1

for all m ∈ {1, . . . , l − 1}.

Proof. We proceed by induction. The base case follows directly from equation (2.3) and the fact

that Aj(1) = al−1 = λ(j), F1(β0) = β0, and µ(j) + β0 = Sj,1(β0).
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Suppose that, for some m ∈ {1, . . . , l − 2}, we have

ϕm(e1,1 ⊗ sj+1) =
k−1∑

β0,...,βm−1=0

eAj(m)+f(m)+1,Fm(β)+f(m)+1 ⊗ sSj,m(β).

We set out to calculate

ϕ(eAj(m)+f(m)+1,Fm(β)+f(m)+1 ⊗ sSj,m(β)+1)

= ϕ(e1,Aj(m)+f(m)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,m(β)+1)ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)

for fixed, but arbitrary β. Both Aj(m) and Fm(β) are bounded from above by km− 1, so Aj(m) +

f(m) and Fm(β) + f(m)1 are less than f(l − 1). Thus both ϕ(e1,Aj(m)+f(m)+1 ⊗ 1)∗ and

ϕ(e1,Fm(β)+f(m)+1 ⊗ 1) are calculated using (2.1). In fact, we have already calculated the adjoint

of ϕ(e1,Fm(β)+f(m)+1 ⊗ 1) in (2.17), so we can reuse this equation once again by simply reversing

the indices. Thus

ϕ(e1,Aj(m)+f(m)+1 ⊗ 1)∗ =
k−1∑
βm=0

ek(Aj(m)+f(m))+βm+f(1)+1,βm+f(1)+1 ⊗ 1

=
k−1∑
βm=0

ek·Aj(m)+βm+f(m+1)+1,βm+f(1)+1 ⊗ 1 (2.22)

by (2.1) and (2.11), and

ϕ(e1,Fm(β)+f(m)+1 ⊗ 1) =

k−1∑
βm=0

eβm+f(1)+1,Fm+1(β,βm)+f(m+1)+1 ⊗ 1. (2.23)

by (2.17). For the middle term we use (2.15), (2.16) and (2.3) to calculate:

ϕ(e1,1 ⊗ sSj,m(β)+1) =

k−1∑
βm=0

eλ(Sj,m)+f(1)+1,βm+f(1)+1 ⊗ sµ(Sj,m(β)+βm+1

=

k−1∑
βm=0

eal−m−1+f(1)+1,βm+f(1)+1 ⊗ sSj,m+1(β,βm)+1. (2.24)

58



Multiplying (2.22) and (2.24) together yields

ϕ(eAj(m)+f(m)+1,1 ⊗ sSj,m(β)+1)

= ϕ(e1,Aj(m)+f(m)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,m(β)+1)

=

(
k−1∑
βm=0

ek·Aj(m)+βm+f(m+1)+1,βm+f(1)+1 ⊗ 1

)
(

k−1∑
βm=0

eal−m−1+f(1)+1,βm+f(1)+1 ⊗ sSj,m+1(β,βm)+1

)

=

k−1∑
βm=0

ek·Aj(m)+al−m−1+f(m+1)+1,βm+f(1)+1 ⊗ sSj,m+1(β,βm)+1

=

k−1∑
βm=0

eAj(m+1)+f(m+1)+1,βm+f(1)+1 ⊗ sSj,m+1(β,βm)+1,

where the last step uses (2.15) from Lemma 2.16. Right-multiplying the above product by (2.18)

results in the sum

ϕ(eAj(m)+f(m)+1,Fm(β)+f(m)+1 ⊗ sSj,m(β)+1)

= ϕ(eAj(m)+f(m)+1,1 ⊗ sSj,m(β)+1)ϕ(e1,Fm(β)+f(m)+1 ⊗ 1)

=

(
k−1∑
βm=0

eAj(m+1)+f(m+1)+1,βm+f(1)+1 ⊗ sSj,m+1(β,βm)+1

)
(

k−1∑
βm=0

eβm+f(1)+1,Fm+1(β,βm)+f(m+1)+1 ⊗ 1

)

=

k−1∑
βm=0

eAj(m+1)+f(m+1)+1,Fm+1(β,βm)+f(m+1)+1 ⊗ sSj,m+1(β,βm)+1.

Hence

ϕm+1(e1,1 ⊗ sj+1) =

k−1∑
β0,...,βm−1=0

ϕ(eAj(m)+f(m)+1,Fm(β)+f(m)+1 ⊗ sSj,m(β)+1)

=
k−1∑

β0,...,βm=0

eAj(m+1)+f(m+1)+1,Fm+1(β,βm)+f(m+1)+1 ⊗ sSj,m+1(β,βm)+1,

proving the lemma.
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All that remains is to prove Theorem 2.11 itself.

Proof of Theorem 2.11. Let i, p, and j be as in Notation 2.13. We claim that ϕl(e1,i⊗1) = e1,i⊗1.

We first take care of the special case where i = 1, p = 0, and j = 0. According to Lemma 2.17, we

have

ϕl−1(e1,1 ⊗ 1) =
k−1∑

β0,...,βl−2=0

eFl−1(β)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ 1.

Temporarily fix β. Clearly Fl−1(β) + f(l − 1) + 1 ≥ f(l − 1) + 1, so we use equation (2.2) to

calculate ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1) and its adjoint. Note that

σ
(
Fl−1(β) + f(l − 1) + 1

)
+ βl−1 = kFl−1(β) + βl−1 = Fl(β, βl−1).

Thus

ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1) =

k−1∑
βl−1=0

eβl−1+f(1),1 ⊗ s
∗
σ(Fl−1(β)+f(l−1)+1)+βl−1+1

=
k−1∑

βl−1=0

eβl−1+f(1)+1,1 ⊗ s∗Fl(β,βl−1)+1. (2.25)

Left-multiplying (2.25) by its adjoint yields the product

ϕ(eFl−1(β)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ 1)

= ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)∗ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)

=

(
k−1∑

βl−1=0

e1,βl−1+f(1) ⊗ sFl(β,βl−1)+1

)
(

k−1∑
βl−1=0

eβl−1+f(1),1 ⊗ s
∗
Fl(β,βl−1)+1

)

=
k−1∑

βl−1=0

e1,1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1.
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Hence

ϕl(e1,1 ⊗ 1) =
k−1∑

β0,...,βl−2=0

ϕ(eFl−1(β)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ 1)

=
k−1∑

β0,...,βl−1

e1,1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

= e1,1 ⊗ 1

because Fl(β, βl−1) + 1 maps bijectively onto {1, . . . , n}.

Now suppose instead that i > 1 so that p > 0 and therefore d = l−1−p < l−1. Then Lemma

2.17 implies that

ϕl−1(e1,i ⊗ 1) =

k−1∑
β0,...,βl−2=0

eFl−1(β)+f(l−1)+1,Aj(l−1)+f(p−1)+1 ⊗ s∗Sj,l−1(β)+1.

We aim to calculate

ϕ(eFl−1(β)+f(l−1)+1,Aj(l−1)+f(p−1)+1 ⊗ s∗Sj,l−1(β)+1)

= ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)∗ϕ(e1,1 ⊗ s∗Sj,l−1(β)+1)ϕ(e1,Aj(l−1)+f(p−1)+1 ⊗ 1)

for fixed, but arbitrary β.

We have already calculated all three of these terms: ϕ(e1,Aj(l−1)+f(p−1)+1 ⊗ 1) was calculated

in (2.20), ϕ(e1,1 ⊗ s∗Sj,l−1(β)+1) in (2.21), and the adjoint of ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)∗ in (2.25).

The expression in (2.20) is accurate for ϕ(e1,Aj(l−1)+f(p−1)+1 ⊗ 1) because Aj(l − 1) < kp−1

(recall that j < kp), so

Aj(l − 1) + f(p− 1) + 1 ≤ kp − 1 + f(p− 1) + 1 = f(p) ≤ f(l − 1).
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Multiplying the adjoint of (2.25) and (2.21) gives us

ϕ(eFl−1(β)+f(l−1)+1,1 ⊗ s∗Sj,l−1(β)+1)

= ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,l−1(β)+1)
∗

=

(
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sFl(β,βl−1)+1

)
(

k−1∑
βl−1=0

eβl−1+f(1)+1,al−(l−1)−1+f(1)+1 ⊗ s∗Sj,l(β,βl−1)+1

)

=
k−1∑

βl−1=0

e1,a0+f(1)+1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1,

where we use the fact that Sj,l(β, βl−1) = Fl(β, βl−1) in the last step. Right-multiplying the above

product by (2.20) yields

ϕ(eFl−1(β)+f(l−1)+1,Aj(l−1)+f(p−1)+1 ⊗ s∗Sj,l−1(β)+1)

= ϕ(eFl−1(β)+f(l−1)+1,1 ⊗ s∗Sj,l−1(β)+1)ϕ(e1,Aj(l−1)+f(p−1)+1 ⊗ 1)

=

(
k−1∑

βl−1=0

e1,a0+f(1)+1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

)
(

k−1∑
βl−1=0

eβl−1+f(1)+1,k·Aj(l−1)+f(l−1−d)+βm+1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

)

=
k−1∑

βl−1=0

e1,k·Aj(l−1)+f(p)+a0+1 ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

Since k ·Aj(l − 1) + a0 = Aj(l) = j and i = 1 + f(p) + j, the above sum can be simplified to

ϕ(eFl−1(β)+f(l−1)+1,Aj(l−1)+f(p−1)+1 ⊗ s∗Sj,l−1(β)+1) =

k−1∑
βm=0

e1,i ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1.

62



Hence

ϕl(e1,i ⊗ 1) =
k−1∑

β0,...,βl−2=0

ϕ(eFl−1(β)+f(l−1)+1,Aj(l−1)+f(p−1)+1 ⊗ s∗Sj,l−1(β)+1)

=
k−1∑

β0,...,βl−1=0

e1,i ⊗ sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

= e1,i ⊗ 1

as Fl(β, βl−1) + 1 maps bijectively onto {1, . . . , n}. This proves the first claim.

Now let j ∈ {0, . . . , n− 1} be as in Notation 2.13. Lemma 2.3 implies that

ϕ(e1,1 ⊗ sj+1) =

k−1∑
β0,...,βl−2=0

eAj(l−1)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ sSj,l−1(β)+1.

We set out to calculate

ϕ(eAj(l−1)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ sSj,l−1(β)+1)

= ϕ(e1,Aj(l−1)+f(l−1)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,l−1(β)+1)ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)

for fixed, but arbitrary β.

We have already calculated ϕ(e1,1 ⊗ sSj,l−1(β)+1) and ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1) in (2.21) and

(2.25), respectively, so we need only calculate ϕ(e1,Aj(l−1)+f(l−1)+1 ⊗ 1)∗. Clearly Aj(l − 1) +

f(l − 1) + 1 ≥ f(l − 1 + 1), so we use equation (2.2):

ϕ(e1,Aj(l−1)+f(l−1)+1 ⊗ 1)∗ =
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sσ(Aj(l−1)+f(l−1)+1)+βl−1+1.

=
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sk·Aj(l−1)+βl−1+1. (2.26)
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Multiplying (2.26) and (2.21) together yields

ϕ(eAj(l−1)+f(l−1)+1,1 ⊗ sSj,l−1(β)) = ϕ(e1,Aj(l−1)+f(l−1)+1 ⊗ 1)∗ϕ(e1,1 ⊗ sSj,l−1(β)+1)

=

(
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sk·Aj(l−1)+βl−1+1

)
(

k−1∑
βl−1=0

eal−(l−1)−1+f(1)+1,βl−1+f(1)+1 ⊗ sSj,l(β,βl−1)+1

)

=
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sk·Aj(l−1)+a0+1sSj,l(β,βl−1)+1

=
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sj+1sFl(β,βl−1)+1.

Right-multiplying the above product by (2.25) gives us

ϕ(eAj(l−1)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ sSj,l−1(β)+1)

= ϕ(eAj(l−1)+f(l−1)+1,1 ⊗ sSj,l−1(β)+1)ϕ(e1,Fl−1(β)+f(l−1)+1 ⊗ 1)

=

(
k−1∑

βl−1=0

e1,βl−1+f(1)+1 ⊗ sj+1sFl(β,βl−1)+1

)
(

k−1∑
βl−1=0

eβl−1+f(1)+1,1 ⊗ s∗Fl(β,βl−1)+1

)

=
k−1∑

βl−1=0

e1,1 ⊗ sj+1sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1.

Hence

ϕl(e1,1 ⊗ sj+1) =
k−1∑

β0,...,βl−2=0

ϕ(eAj(l−1)+f(l−1)+1,Fl−1(β)+f(l−1)+1 ⊗ sSj,l−1(β)+1)

=
k−1∑

β0,...,βl−1=0

e1,1 ⊗ sj+1sFl(β,βl−1)+1s
∗
Fl(β,βl−1)+1

= e1,1 ⊗ sj+1.

This completes the proof.
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Corollary 2.19. Let k, l, and n be as in Notation 2.7 and let ϕ be as in Theorem 2.10. Then

idMk−1
⊗ ϕ is an automorphism of Mn−1 ⊗On such that ϕ∗([1]) = k · [1] and ϕl = idMn−1⊗On .

Proof. This follows directly from the calculation (k − 1)f(l) = kl − 1 = n− 1.

2.4 Connection between Theorems 2.4 and 2.10

We shall now show how Theorems 2.4 and 2.10 relate, and specifically how to derive the latter from

the former.

Lemma 2.20. Let k, l, and n be as in Notation 2.7. Set

Vj+1 =

k−1∑
β=0

eλ(j)+f(1)+1,β+f(1)+1 ⊗ sµ(j)+β+1

for all j ∈ {0, . . . , n − 1}. Then there exists a unique isomorphism ψ0 : M1 ⊗ On → Mk ⊗ On

such that ψ0(e1,1 ⊗ sj+1) = Vj+1 for all j ∈ {0, . . . , n− 1}, where we identify Mk ⊗On with the

diagonal (k × k)-matrix in Mf(l) ⊗On whose top-left corner is in the 2nd row and 2nd column.

Proof. Note that these Vj+1 are the same as in Theorem 2.10, and that any homomorphism M1 ⊗

On →Mk ⊗On must send e1,1 ⊗ 1 to

U1 =

k−1∑
β=0

= eβ+f(1)+1,β+f(1)+1 ⊗ 1.

The fact there existence of a unique homomorphism ψ0 such that ψ0(e1,1 ⊗ sj+1) = Vj+1 for all j

then follows from the proof of Theorem 2.10.

Injectivity is again a consequence of M1 ⊗On being simple and ψ0 being nonzero. Recall that,

for any q ∈ {0, . . . , k − 1},

kl−1−1∑
r=0

Vqkl−1+r+1V
∗
qkl−1+r+1 = eq+2,q+2 ⊗ 1.

This comes from (2.10) and was used in the calculation immediately following (2.10). Similarly,

65



we have

kl−1−1∑
r=0

Vr+1V
∗
qkl−1+r+1 = eq+2,q+2 ⊗ 1 =

kl−1−1∑
r=0

(
k−1∑
β=0

ef(1)+1,β+f(1)+1 ⊗ skr+β+1

)
(
k−1∑
β=0

eβ+f(1)+1,q+β+f(1)+1 ⊗ s∗kr+β+1

)

=

kl−1−1∑
r=0

k−1∑
β=0

ef(1)+1,q+f(1)+1 ⊗ skr+β+1s
∗
kr+β+1

=
n∑
i=1

e2,q+2 ⊗ sis∗i = e2,q+2 ⊗ 1

for all q ∈ {0, . . . , k − 1}. We now need only show that e2,2 ⊗ si is in the image of ψ0 for

all i ∈ {1, . . . , n}. Let i ∈ {1, . . . , n}. Then there exists a unique r ∈ {0, . . . , kl−1 − 1} and

a ∈ {0, . . . , k − 1} such that i− 1 = rk + a. Therefore

Vr+1(ea+2,2 ⊗ 1) =

(
k−1∑
β=0

e2,β+2 ⊗ skr+β+1

)
(ea+2,2 ⊗ 1) = e2,2 ⊗ skr+a+1 = e2,2 ⊗ si.

Since ea+2,2 ⊗ 1 is also in the image of ψ0, this demonstrates that ψ0 is surjective.

Theorem 2.21. Let k, l, and n be as in Notation 2.7, let ψ0 be as in Lemma 2.20, and let ϕ be as in

Theorem 2.10. For each p ∈ {1, . . . , l−2}, define an isomorphism ψp : Mkp ⊗On →Mkp+1 ⊗On

by ψp = idMkp
⊗ψ0 and identify the matrix algebra Mkp ⊗On with the diagonal (kp× kp)-matrix

in Mf(l) ⊗On whose top left corner is located in the (1 + f(p))-th row and (1 + f(p))-th column.

Then ϕ(ei,j ⊗ v) = ψp(ei,j ⊗ v) for all i, j ∈ {1 + f(p), . . . , f(p+ 1)} and v ∈ On.

Furthermore, for any v ∈ On and m ∈ {1, . . . , l − 1}, we have

ϕm(e1,1 ⊗ v) =
(
ψm−1 ◦ · · ·ψ1 ◦ ψ0

)(
e1,1 ⊗ v

)
.

Proof. First, observe that ϕ(e1,1 ⊗ sj+1) = ψ0(e1,1 ⊗ sj+1) for all j ∈ {0, . . . , n − 1} by the

definition of ψ0. Thus ϕ restricts to ψ0 on M1 ⊗On.
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Now let p ∈ {1, . . . , l − 2} and let i, j ∈ {0, . . . , kp − 1}. Since ψp = idMkp
⊗ ψ0, we have

ψp(e1,1+f(p)+i ⊗ 1) = e1,1+f(p)+i ⊗

(
k−1∑
α=0

eα+f(1)+1,α+f(1)+1 ⊗ 1

)

=

(
k−1∑
α=0

eα+f(p)+1,α+f(p)+1 ⊗ 1

)(
k−1∑
β=0

eβ+f(p)+1,k(i−1)+f(p)+1 ⊗ 1

)

=
k−1∑
α=0

eα+f(p)+1,k(i−1)+α+f(p)+1 ⊗ 1

= ϕ(e1,1+f(p)+i ⊗ 1).

Likewise, ψp(e1,1+f(p)+j ⊗ 1) = ϕ(e1,1+f(p)+j ⊗ 1). Then, for all v ∈ On, we have

ϕ(ei,j ⊗ v) = ϕ(e1,i ⊗ 1)∗ϕ(e1,1 ⊗ v)ϕ(e1,j ⊗ 1)

= ψp(e1,j ⊗ 1)∗ψ0(e1,1 ⊗ v)ψp(e1,i ⊗ 1)

= ψp(ei,j ⊗ v).

For the second assertion, let v ∈ On. We proceed by induction. The base case follows from the

first assertion of the lemma, so let m ∈ {0, . . . , l − 2} and suppose that

ϕm(e1,1 ⊗ v) = (ψm−1 ◦ · · ·ψ1 ◦ ψ0)(e1,1 ⊗ v).

Since ψp maps onto the domain of ψp+1 for all p ∈ {0, . . . , l − 3}, we know that the right-hand

expression is an element of Mkm ⊗ On. We know that ϕ restricts to ψm on Mkm ⊗ On from the

first assertion, so

ϕm+1(e1,1 ⊗ v) = (ψm ◦ ϕm)(e1,1 ⊗ v) = (ψm ◦ ψm−1 ◦ · · ·ψ1 ◦ ψ0)(e1,1 ⊗ v).

This completes the proof.

Corollary 2.22. Let k, l, and n be as in Notation 2.7, let ψ0, . . . , ψl−2 be as in Theorem 2.21, and
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let ϕ be as in Theorem 2.10. Define ψl−1 : Mkl−1 ⊗On →M1 ⊗On by

ψl−1 = ψ−10 ◦ ψ
−1
1 ◦ · · · ◦ ψ

−1
l−2,

as in the proof of Theorem 2.4. Then ϕ(ei,j ⊗ v) = ψl−1(ei,j ⊗ v) for all i, j ∈ {1 + f(l −

1), . . . , f(l)} and v ∈ On.

Proof. Let i, j ∈ {1 + f(l − 1), . . . , f(l)} and let v ∈ On. Then

ψl−1(ei,j ⊗ v) = (ϕl ◦ ψl−1)(ei,j ⊗ v) = (ϕ ◦ ψl−2 ◦ · · · ◦ ψ0 ◦ ψl−1)(ei,j ⊗ v) = ϕ(ei,j ⊗ v)

because ϕ has order l.

Theorem 2.21 and Corollary 2.22 together imply that ϕ(ei,i ⊗ 1) = ψp(ei,i ⊗ 1) for all i ∈

{1 + f(p), . . . , f(p + 1)} and ϕ(e1,1 ⊗ sj+1) = ψ0(e1,1 ⊗ sj+1) for all j ∈ {0, . . . , n − 1}. This

is precisely how we defined ϕ in the proof of Theorem 2.4, showing that Theorem 2.10 is a specific

instance of Theorem 2.4.

In fact, because ϕ restricts to ψl−1 on Mkl−1 ⊗On, we have the curious relation

(ψ−10 ◦ ψ
−1
1 ◦ · · · ◦ ψ

−1
l−2)(ei,j ⊗ v) = ψl−1(ei,j ⊗ v)

= ϕ(ei,j ⊗ v)

= ϕ(e1,i ⊗ 1)∗ψ0(e1,1 ⊗ v)ϕ(e1,j ⊗ 1) (†)

for all i, j ∈ {1 + f(l − 1), . . . , f(l)} and v ∈ On. We have effectively shown that (†) holds for

any automorphism derived from Theorem 2.4 that has order l, although (†) is not sufficient to imply

ϕ has order l. Further work will have to be done to determine what properties an automorphism

derived from Theorem 2.4 require so that it has order l, and if and how these properties can be

realized.
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