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Introduction

This document is an exposition on the classical theory of symmetric functions and how it can be used

to obtain the character table of Sn. Loosely speaking a symmetric function is a polynomial in some list of

variables {x1, x2, . . . } (could be finite or infinite) which is invariant under permutation of the indices (the

natural action of Sn).

We begin with giving a whirlwind review of the representation theory of finite groups and character

theory in Section 1. We are only ever working over C. In this section we state many well known theorems

from representation theory, and give a discussion on the inner product on characters. Section 1 is filled with

examples mostly pertaining to the symmetric group as this is the primary focus. We build up to creating

character tables for the symmetric group, and then move on to studying symmetric functions independently

in Section 2. We give a detailed discussion on Λ, the algebra of symmetric functions, and all the various

families of symmetric functions which live there. We also include a detailed discussion on Schur functions,

which are the most important basis for Λ, as they will turn out to correspond to irreducible characters

of the symmetric group. Section 2 also develops a complex inner product on Λ, and discusses consequent

orthogonality relations for some of our bases. Finally at the end of Section 2 we have the tools to create

Kostka matrices. These matrices represent a transition map between two different bases of symmetric

functions, and play a key role in obtaining the character table of the symmetric group.

The two topics converge in Section 3, which is a construction of a correspondence between the

algebra of symmetric functions Λ and the space R of class functions on Sn. It is well known that the

number of irreducible characters of a finite group G equals the number of conjugacy classes in G, and in the

symmetric group Sn this is further equal to the number of partitions of n. The characteristic map will allow

us to realize exactly which partition a given irreducible character χ should correspond to, via the realization

that the Schur symmetric functions represent irreducible characters under the characteristic map. It is at

this point that we can recover our character tables of the symmetric group from Section 1 by realizing the

character table as a transition map between certain bases of Λ. This is Frobenius’ theorem proved originally

in 1900 [Fro00]. Remarkably, the proof uses hardly any group/representation theory whatsoever! We also

include some basic examples of code in Sage which produce the character tables and other transition maps.

Most of the results from Section 1 can be found in [JL93], and likewise for Sections 2 and 3 in [Mac79]

and [Sag01].
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1 Representations, CG-modules, and Characters

1.1 Representations and CG-modules

This section lists some of the definitions that we will use throughout the rest of the document, and state
some important results from character theory. We will always take our group G to be Sn for some n, and
our field F will be C, so all of the baby examples from this section will use the symmetric group, and use
C as the ground field.

Definition 1.1.1: Let G be a finite group. A representation of G is a homomorphism ϕ : G ! GLn(C)
for some n.

Example: For V = Cn, and G = Sn, there is always a homomorphism ρ : G ! GL(V ) such that g 7! Pg,
where Pg is the corresponding permutation matrix, i.e., the matrix sending the basis vector ei 7! eg(i) for
1 ≤ i ≤ n. For example, when n = 4, some examples of permutations matrices are

(123) 7!


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , (2314) 7!


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 , (13) 7!


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1



Definition 1.1.2: Let ρ : G ! GLn(C) and σ : G ! GLm(C) be two representations of G. We say that
ρ is equivalent to σ if n = m and there exists an invertible n× n matrix T such that for all g ∈ G we have

σ(g) = T−1ρ(g)T.

It is clear that equivalence of representations is an equivalence relation. Note that for every group G, there
is a trivial representation ρ : G! GL1(C) = C×, g 7! 1.

Definition 1.1.3: Let G be a group and V a vector space over C. The group G is said to act linearly on
V if it acts on V in the usual way, and additionally:

g · (λv) = λ(g · v) (1)

g · (v + w) = g · v + g · w (2)

The notion of a linear group action gives rise to an alternative way to obtain representation of a finite group
G: if we are given a finite dimensional vector space V over C, if we define a linear group action on V and
choose a basis, we obtain a matrix representation [g] for each g ∈ G :

g · v = [g] · v, v ∈ V, g ∈ G.

A vector space with this extra structure of a linear group action is usually called a CG-module, but we will
not give that full definition here. Note that given a representation of a finite group G, we have a corre-
sponding CG-module, and conversely by choosing a basis, given an CG-module we obtain a representation
of G. This correspondence is important, and from now on we will mostly use the language of CG-modules.
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Definition 1.1.4: Let V be a CG-module. A subspace W ⊆ V is said to be a submodule of V if g ·W ⊆W ,
i.e., g · w ∈W for all g ∈ G, w ∈W .

Example: We continue on in a similar way to our previous example with symmetric groups. The symmetric
group Sn acts on the left on the set {1, 2, . . . , n} as always. Let V be the free complex vector space
spanned by formal elements {v1, v2, . . . vn}. Then Sn acts on {v1, . . . , vn} by g · vi = vg(i), and if we
linearize this action, V is turned into an CSn-module, called the natural permutation module. Observe that
M = span{v1 +v2 + · · ·+vn} is a 1-dimensional submodule of V , since if any g ∈ G acts on v1 +v2 + · · ·+vn
by permuting the basis in some way we have g · (v1 + v2 + · · · + vn) = g(v1) + g(v2) + · · · + g(vn) =
v1 + v2 + · · ·+ vn ∈M .

Definition 1.1.5: A CG-module V is irreducible if it has no non-trivial submodules, i.e, no submodules
other than {0} and V itself.

Example: Still following our previous example, since we’ve found a non-trivial submodule M ⊂ V , this
means that V is not irreducible. Naturally M itself is irreducible as a CG-module, since it is 1-dimensional.

Example: Let G be a finite group and let V = CG, the group algebra of G. Then CG is naturally a
CG-module, where the action of G is given by left multiplication. This is called the left regular module of
G and it has dimension |G|.

Definition 1.1.6: Let V and W be CG-modules and let ϕ : V ! W be a linear map. Then ϕ is a
CG-module homomorphism if

ϕ(g · v) = g · ϕ(v), g ∈ G.

Note that this agrees with the usual definition of an R-module homomorphism; we just need our function ϕ
to commute past elements of R (in this case, elements of G since we have R = CG and ϕ is already linear).

As expected, the kernel and image of an CG-module homomorphism ϕ : V !W are submodules of V and
W respectively.

Theorem 1.1.7 (Mashke’s Theorem): Let G be a finite group and let V be a CG-module. If U ⊂ V is
is a submodule, then there exists a submodule W ⊂ V such that V = U ⊕W.

An important consequence of Mashke’s Theorem is that every nonzero CG-module for a finite group G is
completely reducible. That is, any CG-module V decomposes as U1⊕· · ·⊕Un where each Ui is an irreducible
submodule of V .

Example: The permutation CSn-module V arising from the action of Sn on {v1, v2, . . . , vn} (see the example
following Definition 1.1.4) decomposes as V = M ⊕L where M = span(v1 + v2 + · · ·+ vn), and L is another
irreducible submodule consisting of ”trace zero” vectors. Irreducibility of L follows as 〈χL, χL〉 = 1 (see 1.3
for this inner product and explanation.)

1.2 Characters

As previously stated, the main purpose of this project is to show how symmetric functions can be used
to yield the character table of Sn. In this section we define characters, and we use results from character
theory to make some character tables for Sn for small n.

Definition 1.2.1: Let V be a CG-module, and let ϕ be the corresponding representation. The character
of V is the function χ : G! C defined by
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χ(g) = tr[ϕ(g)], g ∈ G.

The character of V is a class function: it is a function that is constant on conjugacy classes of G. This is
due to the property of trace: tr(AB) = tr(BA). For any matrices A,B ∈ GLn(C) we have

tr(ABA−1) = tr(BAA−1) = tr(B).

In particular the above argument implies that if g, h ∈ G and g is conjugate to h, we have that χ(g) = χ(h).
This is important for the symmetric group since conjugacy classes in the symmetric group are determined
by cycle type, which motivates the use of partitions. We say that χ is an irreducible character of G if χ is
the character of an irreducible CG-module, otherwise it is said to be reducible.

Note that if V,W are two isomorphic CG-modules, there are basis B1, B2 of V and W respectively such
that

[
g
]
B1

=
[
g
]
B2

for all g ∈ G. Then as a consequence, if V,W are isomorphic CG-modules, then the
character of V equals the character of W.

Definition 1.2.2: Let V be a CG-module with character χ. The degree of χ is defined as χ(1), which is
equal to dimC V . A character of degree 1 is said to be a linear character.

Note that linear characters are irreducible.

Example: Consider the trivial representation of G over C. Every g ∈ G is sent to 1 ∈ C×, which is trivially
just a 1 × 1 matrix. Hence the trace of every matrix is 1, so the character of the corresponding module is
1 on every conjugacy class of G. This is called the trivial character.

Example: There always exists a homomorphism Sn ! C× with g 7! sgn(g) = ±1. This is called the sign
representation of Sn, and the corresponding character is linear as well (it is degree 1.)

Let V be a CG-module with V = U1⊕· · ·⊕Um where each Ui is an irreducible submodule. The corresponding
matrices for G take a block diagonal form with respect to each submodule, and so taking the trace of each
matrix one can see that the character of V is the sum of the characters of U1, . . . , Un.

Example: Suppose Sn acts on a finite set X with |X| = m. Let V be the C-vector space spanned by
formal elements {vi}, i ∈ X. Then V is a CG-module with basis v1, v2, . . . , vm such that for all g ∈ Sn we
have g · vi = vg(i). Let ϕ be the representation associated to this module. Then the permutation matrix
corresponding to g has diagonal entry 0 unless g(i) = i, in which case it is 1 (see the example following
Definition 1.1.1 for some permutation matrices). Thus the trace of the matrix ϕ(g) equals the number of
fixed points in X when g ∈ Sn acts on X, so the character π of this module is

π(g) = |fix(g)|.

where fix(g) is the number of fixed points of g in X. For example, when Sn acts on X = {1, 2, . . . , n} the
element g = (1234) ∈ S7 has three fixed points, namely 5,6, and 7. The character π is called the permutation
character of G = Sn. The permutation module associated to the usual action of Sn on {1, 2, . . . , n} is called
the natural permutation module. For an example of a non-natural permutation module, see the end of
Section 1.5.

Theorem 1.2.3: Let V be a permutation module for Sn. Then πV : Sn ! C, g 7! |fix(g)| is a character
of Sn. Furthermore, the function χ : Sn ! C sending g 7! |fix(g)| − 1 is also a character of Sn.

The outline of the proof in the case of the natural permutation module is as is follows: By Mashke’s Theorem,
for the submodule M = span{e1, e2, e3}, there exists a submodule U such that V = M⊕U. Observe that the
character of M is the trivial character since U is isomorphic to the trivial module. Therefore by Theorem
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1.2.2, if π is the character of V and χ is the character of U we have π(g) = 1 + χ(g), and since π(g) is the
number of fixed points we have that

χ(g) = |fix(g)| − 1

is the character of U .

1.3 Inner Products of Characters

We mentioned before that characters are constant on conjugacy classes. Functions constant on conjugacy
classes are called class functions, and the space of all such functions R(G) is a vector space: given two class
functions χ, ψ : G! C, addition and scalar multiplication is defined by

(χ+ ψ)(g) = χ(g) + ψ(g)

λ · ψ(g) = λ(ψ(g)).

In fact, R(G) is a ring with pointwise multiplication (χ ·ψ)(g) = χ(g)ψ(g). The space of class functions can
be equipped with a complex inner product:

Definition 1.3.1: Let χ, ψ be class functions χ, ψ : G! C. Define an inner product 〈·, ·〉 on R(G) by

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

One can check that the above is conjugate symmetric and sesquilinear. We now list some important results,
the proofs for all of which can be found in Liebeck [JL93], our basic reference for character theory.

Theorem 1.3.2: Let χ1, . . . , χn be a complete set of non-isomorphic irreducible characters of G. Then

n∑
i=1

(χi(1))2 = |G|.

The above theorem isn’t too difficult to prove; it follows from the Artin-Wedderburn theorem applied to the
semisimple algebra CG. However the next theorem is much harder to prove: the proof requires properties
of algebraic integers.

Theorem 1.3.3: Let χ be an irreducible character of G. Then χ(1) divides |G|.

One of the most important result that we will use very frequently is the following:
Theorem 1.3.4 (Schur’s Lemma): Let U, V be non-isomorphic irreducible CG-modules with characters
χ and ψ respectively. Then

〈χ, χ〉 = 1,

〈χ, ψ〉 = 0.

In other words, irreducible characters are orthonormal in R(G). In particular, given a complete set of
irreducible characters χ1, χ2, . . . , χn of G, we have 〈χi, χj〉 = δij . This implies that χ1, χ2, . . . , χn are
linearly independent in R(G). Furthermore if ψ is any character then
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ψ =

n∑
i=1

diχi

where di = 〈ψ, χi〉.

Corollary 1.3.5: Let ψ be a character of G. Then ψ is irreducible if and only if 〈ψ,ψ〉 = 1.

Since any character is a sum of irreducibles, this is a direct corollary of Schur’s Lemma.

Theorem 1.3.6: The number of irreducible characters of G is the number of conjugacy classes of G.
Equivalently, the number of isomorphism classes of irreducible representations of G is equal to the number
of conjugacy classes in G.

In R(G), one has a basis {δi} consisting of functions δi called indicator functions. These are functions which
take the value 1 on a single conjugacy class and zero on all other classes. These functions will be discussed
in more detail later. It follows that dimR(G) is equal to the number of conjugacy classes of G.

Since the irreducible characters χ1, χ2, . . . , χn are linearly independent elements of R(G), if l is the number
of conjugacy classes then we have n ≤ l. One can further consider the dimension of Z(CG), the center of
the group algebra of G over C, to find that dimZ(CG) = l, and the above result follows after applying the
Artin-Wedderburn theorem. Therefore the {χi} are also a basis for R(G).

Note that characters are only closed on N-linear combinations of irreducible characters, so the space of
characters of G is not a vector space. Occasionally we will need to deal with virtual characters. A virtual
character is defined as any Z-linear combination of irreducible characters {χi}.

1.4 Character Tables

Now that we know that the number of irreducible characters of a finite group G is equal to the number of
conjugacy classes of G, we can begin to explore character tables, particularly for the symmetric group. We
can use many of the tricks from this section to fill out character tables for small n (say, n ≤ 5). By the end
of Section 3, we will know how to obtain the character table of Sn for any n, and with hardly any of the
tricks from this section whatsoever!

Definition 1.4.1: Let G be a finite group and let χ1, χ2, . . . , χn be the irreducible characters of G and let
g1, g2, . . . , gn be representatives for the conjugacy classes in G. The character table of G is an n× n matrix
whose ij-entry is χi(gj) with 1 ≤ i ≤ n, 1 ≤ j ≤ n.

In other words, the character table of G is an array whose columns are indexed by conjugacy classes and
whose rows are indexed by irreducible characters. Note that the character table of G is always an invertible
matrix, since we know that its rows (the irreducible characters) are linearly independent.
Example Let’s make our first character table. Let G = S3. Conjugacy classes in Sn are determined by cycle
type, and we have three possible cycle types 1, (12), (123) in S3. Therefore there are 3 irreducible characters.
To connect to some previously stated results: this is reflected in the fact that |S3| = 6 = 12 + 12 + 22. In
particular we expect that the degrees of the three irreducible characters are 1,1, and 2. I claim that we
already know what the corresponding modules are!

First, there is the trivial character χ1, corresponding to the trivial representation, i.e., the map sending
every g ∈ G to the 1× 1 identity matrix. This character is 1 on every class. The other degree 1 character
corresponds to the sign homomorphism; so this character χsgn is just ±1 depending on the sign of the
permutation. Filling out these values in rows we have
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S3 1 (12) (123)
χ1 1 1 1
χsgn 1 −1 1
χ3

The last character χ3 we have already computed - it is the permutation character χp. We know that the
natural permutation module M for S3 is 3-dimensional over C, and its character was the number of fixed
points. Recall that to account for the reducibility of this module we ended up finding a degree 2 character
given by |fix(g)| − 1 (this was Theorem 1.2.3.) In fact, this character is irreducible.

Recall Burnside’s Lemma: When G acts on a set X, the number of orbits is the average number of fixed
points. Thus one has

〈χp, 1〉 = # of orbits on X

where in this case X = {1, 2, 3}. Since our action is transitive we have 〈χp, 1〉 = 1. Furthermore we have
〈χp, χp〉 = 〈χp ·χp, 1〉 = the number of orbits on X×X, which in this case equals 2, since we have two orbits
on X ×X, being the diagonal (i.e., pairs (a, a) ∈ X ×X), and everything else. Hence we have 〈χp, χp〉 = 2
and 〈χp, 1〉 = 1, and it follows that 〈χp − 1, χp − 1〉 = 1, so χp − 1 is irreducible (and we know it is a
character by Theorem 1.2.3.)

The identity element fixes everything, (12) fixes 3, and (123) fixes nothing. Therefore the last three values
are 2, 0, and -1. Thus we have

S3 1 (12) (123)
χ1 1 1 1
χsgn 1 −1 1
χp 2 0 -1

and this is the character table for S3. Once again, since it is important: Sn always has a irreducible degree
n− 1 character, given by |fix(g)| − 1. The corresponding module is a great help in finding new irreducible
characters, and will be used to construct character tables for S4 and S5 in the next section.

As previously discussed, we know that 〈χi, χj〉 = δij for two non-isomorphic irreducible characters. In terms
of the rows of a character table, for any r, s ∈ {1, 2, . . . , n}, this translates to

n∑
i=1

χr(gi)χs(gi)

|CG(gi)|
= δrs.

Another important result is that the columns are orthogonal as well:

Theorem 1.4.2: Let χ1, χ2, . . . , χn be the irreducible characters of a finite group G, and let g1, g2, . . . , gn
be representatives for the conjugacy classes in G. Then for any r, s ∈ {1, 2, . . . , n}, we have

n∑
i=1

χi(gr) · χi(gs) = δrs|CG(gr)|.

It turns out that in the symmetric group, all the characters are integers, so the conjugate in the above sums
can be dropped in our case. One can verify using our example of the character table of S3 on the previous
page that these two relations hold. Note that when checking row orthogonality, you need to include the size
of the centralizer in each term. We give a formula for this, since it will come up later and is actually very
important.
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When we write gλ ∈ Sn, we mean element of cycle type λ = (1m1 , 2m2 , 3m3 , . . . , nmn), where in this notation
each component imi of the tuple λ represents mi i−cycles in the disjoint cycle decomposition of gλ. For
example, if λ = (22, 5), then gλ consists of two 2-cycles and one 5-cycle, so then gλ ∈ S9 is an element of
the form

g = (12)(34)(56789).

Lemma 1.4.3: Let

zλ =
∏
i≥1

imi ·mi!.

Then zλ = |CSn(gλ)| where gλ is an element of cycle type λ in Sn.

Proof. Let Sn act on itself by conjugation. Then given any gλ ∈ Sn, the centralizer of gλ is the stabilizer
subgroup of the conjugation action. Therefore by the Orbit-Stabilizer theorem:

|G| = n! = |CSn(gλ)| · |Orb(gλ)|.

The size of the orbit of the conjugation action in the symmetric group is just the number of elements of
cycle type λ. To count this, write λ = (1m1 , 2m2 , 3m3 , . . . , nmn) out in a tuple of length n making note of
its cycles. To begin with, of course there are n · (n− 1) · · · = n! possible ways to arbitrarily label the entries
in each cycle with {1, 2, . . . , n}. Now, to count the actual number of elements in this conjugacy class we
need to make sure we do not double count equivalent i-cycles, nor cycles of the same length in different
positions. For a given i-cycle σ = (12 · · · i), there are i equivalent ways of writing σ, and if there are mi of
these cycles then there are imi equivalent compositions of i-cycles. Furthermore, if there are mi of these
cycles, the cycles can be ordered in mi! ways which all yield the same overall element in Sn. Thus to avoid
counting these extra elements we must divide n! by imi and mi! for each i to obtain the size:

|Orb(gλ)| = n!∏
i≥1

imi ·mi!

and then the result follows by the Orbit-Stabilizer theorem as previously mentioned.

1.5 Tensor Product Modules and Examples for S4, S5

One might hope that for two characters ψ, χ of a group G, that the function (ψ · χ)(g) ≡ ψ(g) · χ(g) is a
character as well. Indeed it is: if V,W are the corresponding CG-modules for ψ and χ, ψ · χ is a character
for the tensor product module V ⊗W (defined below). In particular, this will help us create new characters
and fill out character tables easier. One especially useful application of this is taking powers of characters
(although, we won’t be needing this for our character tables).

Let G be a finite group and let V,W be CG-modules with basis {vi}, 1 ≤ i ≤ n and {wj}, 1 ≤ j ≤ m
respectively, for some n and m. We know that the set of all vi ⊗wj is a basis for V ⊗W as a vector space,
and if we define an action of G on pure tensors and linearly extend, we turn V ⊗W into a CG-module.

Definition 1.5.1: For all g ∈ G, define

g(vi ⊗ wj) ≡ g(vi)⊗ g(wj).
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and in general define

g

(∑
i,j

λij(vi ⊗ wj)
)
≡
∑
i,j

λij(g(vi)⊗ g(wj)).

It follows from the above that for any pure tensor v⊗w (not necessarily basis elements) we have g(v⊗w) =
g(v)⊗ g(w). As a consequence, the action of G defined above turns V ⊗W into a CG-module.

Theorem 1.5.2: Let V,W be CG-modules with characters ψ, χ respectively. Then the character of V ⊗W
is ψ · χ (the pointwise product defined earlier).

One way to prove the above is by noting the following: ifG is a finite group and V be a CG-module, and ϕ the
corresponding representation, then for all g ∈ G, there is a basis of V so that ϕ(g) is diagonal. One can choose
this basis for each module V,W , and then note that g(vi⊗wj) = g(vi)⊗g(wj) = λivi⊗µjwj = λiµj(vi⊗wj),
and the result follows.

As a result, the product of any two characters is again a character (it is a character of the tensor product
module). The final result we need to start making more characters is:

Corollary 1.5.3: Let χ be a character of G and let ψ be a linear character of G. Then χ ·ψ is irreducible
if and only if χ is irreducible.

Example: We now have the basic tools to make the character tables for S4 and S5. Let’s start with S4. There
are five conjugacy classes with representatives 1, (12), (123), (12)(34), (1234). Similar to how we computed
the characters in S3, we can immediately fill out three rows using the trivial character, sign character, and
permutation character:

S4 1 (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χsgn 1 -1 1 -1 1
χp 3 1 0 -1 -1
χ4

χ5

To obtain the last two characters, since we know that the permutation character is irreducible, we know
that χsgn ·χp is a new irreducible character by (1.5.3), and this character corresponds to the tensor product
of their respective modules. So, we now have

S4 1 (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χsgn 1 -1 1 -1 1
χp 3 1 0 -1 -1

χsgn · χp 3 -1 0 1 -1
χ5

Since χ5(1) = dimC V (since this is the trace of the identity matrix), we can use the fact that |G| equals
the sum of the squares of the degrees of the irreducible characters to obtain χ5(1). We have 24 = 1 + 1 +
32 + 32 + (deg χ5)2, so deg χ5 = 2. Now we can obtain the remaining values of the irreducible characters
via the orthogonality of the columns:
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S4 1 (12) (123) (1234) (12)(34)
χ1 1 1 1 1 1
χsgn 1 -1 1 -1 1
χp 3 1 0 -1 -1

χsgn · χp 3 -1 0 1 -1
χ5 2 0 -1 0 2

and we now have the complete character table of S4.

The character table of S5 is perhaps the first nontrivial one, since we will need to reach deeper into our
toolbag of tricks to compute all the characters. The first few steps to create the character table of S5 are the
same as that of S4; we first compute all the conjugacy classes and fill in the trivial, sign, and permutation
characters, and then fill in the character of χp ⊗ χsgn as before:

S5 1 (12) (12)(34) (123) (123)(45) (12345) (1234)
χ1 1 1 1 1 1 1 1
χsgn 1 -1 1 1 -1 1 -1
χp 4 2 0 1 -1 -1 0

χsgn · χp 4 -2 0 1 1 -1 0
χ5

χ6

χ7

However, unlike in the character table of S4, we now need to find a way to come up with an entirely new
irreducible character χ5. Note that once we do so, we can just multiply it with the sign character as usual
to obtain χ6, and then use the dimension formula + orthogonality to obtain χ7.

For 1 ≤ i ≤ 5, 1 ≤ j,≤ 5, consider the set of unordered pairs

X = {(i, j) | i 6= j}.

Observe that S5 acts on X in the natural way. Additionally, since i, j ∈ {1, 2, 3, 4, 5}, counting elements
of X we see that |X| = 5·4

2 = 10, so we’ve discovered an action of S5 on a set of size 10. Thus if we take
V to be the free C-vector space with basis {vx}x∈X indexed by our set of pairs X and linearly extend the
action of S5, we have a new CS5-module V. This is also a permutation module, though not the natural
one, as our basis is now labeled by these pairs. Then with respect to our basis {vx} we obtain a matrix
representation of S5 in the same way as in our natural permutation module. In particular, since this is
another permutation module, one can see that the character χ will be the number of fixed points again,
but this time since S5 is acting on X (which labels our basis of V ), the character is the number of fixed
points in X. The transposition (12) ∈ S5 fixes the pairs (3, 4), (4, 5), (1, 5), (3, 5), so there are 4 fixed points.
The cycle (123) fixes (4, 5), the element (12)(34) fixes the pairs (1, 2), (3, 4), and the element (12)(345) fixes
(1, 2). The identity element fixes all 10 pairs. Putting these results into a table we have

S5 1 (12) (12)(34) (123) (123)(45) (12345) (1234)
χ 10 4 2 1 1 0 0

so we’ve found a new character of degree 10. The module V we created to obtain this character is sometimes
called the symmetric part of χ2

p = χp⊗χp. The sizes of the centralizers of each representative (in the order
as shown in the table) are 120, 12, 8, 6, 6, 5, and 4. Now using the inner product on characters we see that

〈χ, χ〉 =
100

120
+

16

12
+

4

8
+

1

6
+

1

6
= 3
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and therefore by (1.3.4), since 3 = 12 + 12 + 12, we know that χ = ψ1 + ψ2 + ψ3 where ψ1, ψ2, ψ3 are three
other irreducible characters of S5. If we can compute three irreducible characters and find that we already
know two of them, we can solve for the third. To find out what these are, we compute the inner product of
χ with the other irreducible characters we’ve found from our table:

〈χ, χ1〉 =
10

120
+

1

3
+

1

4
+

1

6
+

1

6
= 1

〈χ, χsgn〉 =
10

120
− 4

12
+

2

8
+

1

6
− 1

6
= 0

〈χ, χp〉 =
40

120
+

8

12
+

1

6
− 1

6
= 1

〈χ, (χsgn · χp)〉 =
40

120
− 8

12
+

1

6
+

1

6
= 0

Hence by (1.3.4) χ = χ1 + χp + χ5 where χ5 is some other irreducible character. Subtracting the values of
χ1 and χp from χ yields the values of χ5 :

S5 1 (12) (12)(34) (123) (123)(45) (12345) (1234)
χ5 5 1 1 -1 1 0 -1

so we’ve finally found a new irreducible character. At this point our character table of S5 looks like:

S5 1 (12) (12)(34) (123) (123)(45) (12345) (1234)
χ1 1 1 1 1 1 1 1
χsgn 1 -1 1 1 -1 1 -1
χp 4 2 0 1 -1 -1 0

χsgn · χp 4 -2 0 1 1 -1 0
χ5 5 1 1 -1 1 0 -1
χ6

χ7

Lastly, just like we did with the character table for S4, we can multiply by the sign character, use the
dimension formula to get the degree of χ7, and then use column orthogonality to quickly fill in the final two
rows:

S5 1 (12) (12)(34) (123) (123)(45) (12345) (1234)
χ1 1 1 1 1 1 1 1
χsgn 1 -1 1 1 -1 1 -1
χp 4 2 0 1 -1 -1 0

χsgn · χp 4 -2 0 1 1 -1 0
χ5 5 1 1 -1 1 0 -1
χ6 5 -1 1 -1 -1 0 1
χ7 6 0 -2 0 0 1 0

and we’re done.

At this point we’ve given a brief review of character theory and given some small n examples of the character
table of Sn up to n = 5. For the character table of S5, we had to find a completely new module χ5 by
considering an action on pairs (or, the symmetric part of the square of the natural permutation module). In
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general permutation modules are an excellent source of new characters to help fill out the character tables
for higher n, however, overall beyond n = 5, filling out the character table in this way becomes highly
nontrivial. The next section focuses on the theory of symmetric functions which is (for now) completely
separate from representation/character theory, but it will turn out that the theory of symmetric functions
can be used to yield the character table of Sn in general!
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2 Symmetric Functions

2.1 Partitions

Definition 2.1.1: A partition λ is an infinite, weakly decreasing sequence

(λ1, λ2, λ3, . . . ), λi ∈ Z≥0, λ1 ≥ λ2 ≥ λ3 ≥ . . .

with finitely many nonzero terms.

The nonzero λi are the called the parts of λ, and we call the number of nonzero parts the length of λ,
denoted by l(λ). We usually use the index n when referring to the length of a partition. The sum of the
parts d =

∑
i

λi is denoted |λ| and is called the size of λ. Usually the partitions are short enough so that we

may just say that λ is a partition of size d and the length of λ is easily observed. We will also often write
λ ` d, and in this case we will often abbreviate our speech and say “λ is a partition of d.”

Example: The partition α = (4, 2, 2, 1, 0, 0, . . . ) has 4 nonzero parts, so l(α) = 4. The sum of the parts is
|α| = 9, so we write α ` 9 and say α is a partition of 9.

Definition 2.1.2: An n-part partition λ is a weakly decreasing sequence (λ1, λ2, λ3, . . . , λn) with finitely
many terms.

Example: The sequence (2,1,0) is a 3-part partition of length 2.

Definition 2.1.3: Let λ = (λ1, λ2, . . . ) be a partition. The truncation of λ is denoted λ[n] and is defined
as the n-part partition λ[n] = (λ1, λ2, . . . , λn) where λn is the last nonzero term in the sequence.

Example: λ = (4, 2, 2, 1) is a 4 part partition of size 9. We will specify when λ is an n-part partition or a
regular partition, but in both cases the notation will be the same since λ ”knows” which one it is. However,
we will always specify when we pass to a truncation, and the notation is given above. Later on this will
arise when passing between an infinite variable ring of polynomials and a finite one, and we will always
need to make clear which setting we are in. Following our example above, if α = (4, 2, 2, 1, 0, 0, . . . ), then
α[4] = (4, 2, 2, 1), which is just our initial λ.

Definition 2.1.4: A composition µ is an infinite sequence µ = (µ1, µ2, µ3, . . . ), µi ∈ Z≥0 with finitely
many nonzero terms.

Just like with our definition for a partition λ, when we have a finite sequence (µ1, µ2, . . . , µn) of n elements
as oppose to an infinite one, we say µ is an n-part composition.

Note that an n-part composition can have zeros in arbitrary places, so for compositions there is no distinction
between “parts” and elements of the sequence as was defined for partitions. We are just saying that µ is
finite and has n terms, some of which could be 0. Furthermore, note that in the case of a composition µ, the
order of the µi does not matter, in contrast to a partition. For example, (4, 5, 5, 6) is a 4-part composition,
but it is not a partition, as the integers are not listed in weakly decreasing order.

The following is a nice way to visualize partitions:

Definition 2.1.5: Let λ be a partition. The Young diagram of λ is an array of boxes, with λi boxes in
the ith row.

Example: If λ = (4, 2, 2, 1) as before, the Young diagram for λ would be:
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Definition 2.1.6: Given some partition λ of size d and length n, a Young tableau T (also called a Young
tableau of shape λ, or a λ-tableau) is an array of boxes with n rows with the numbers 1, 2, . . . d filled into
the boxes bijectively.

Example: If λ ` 6 = (3, 2, 1) as before, then one such λ−tableau T would be:

1 5 4

2 6

3

Of course, if d = |λ|, there are d! possible Young tableax of shape λ. If we allow for there to be repeats
when we insert the numbers 1, 2, . . . , d into the boxes, then this would be called a generalized λ-tableau.

Example: Following the previous example again, one generalized λ-tableau would be:

1 5 5

1 3

5

Note that in this case we obtain two 1’s, zero 2’s, one 3, zero 4’s, and two 5’s - this gives rise to a 6-part
composition µ = (2, 0, 1, 0, 3, 0). This µ is called the content of T , as given in the following definition:

Definition 2.1.7 : For T a generalized λ−tableau, we say the content of T is the n-part composition

cont(T ) = (µ1, µ2, . . . , µn)

where µi is the number of i’s in T . Note here that n is the largest integer appearing in the tableau for
λ, not necessarily equal to |λ| = d. In this case we say T has content µ. A generalized λ−tableau T with
content µ is semi-standard if it is weakly increasing along its rows and strictly increasing down its columns.

Example: If λ = (4, 2, 2) ` 8 and µ = (0, 3, 0, 0, 1, 1, 3), then a semi-standard tableau of shape λ and content
µ would be:

2 2 2 7

5 6

7 7

Before we can begin the discussion on symmetric functions, we need one more important definition involving
partitions:

Definition 2.1.8 (Dominance Order): Let ν and λ be n-part partitions of size d. We write νCλ when
we have:

ν1 + ν2 + · · ·+ νk ≤ λ1 + λ2 + . . . λk

for all 1 ≤ k ≤ n.

Example: Consider λ = (6, 3, 3, 1), ν = (4, 4, 2, 2). These partitions have the following Young diagrams:
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• •

C •

•

Where the dots indicate boxes which get moved down in the diagram on the right. This process of ”moving
down boxes” is what makes the diagram on the left larger than that on the right in this ordering. We see
that the first row of the diagram of λ has more boxes than the first row for ν’s diagram. The number of
boxes in both the first and second row of λ is also greater than the number of boxes in the first two rows
of ν. Continuing this process and verifying this total for each new row of λ is still larger than that of ν is
exactly verifying the definition of our dominance order. Thus in this case we have ν C λ and we say that λ
dominates ν.

2.2 The Algebra of Symmetric Functions, Λ

Let {x1, x2, . . . , xn} be a set of n variables. Let C[x1, x2, . . . , xn] be the algebra of polynomials in these
variables. The symmetric group Sn acts on C[x1, x2, . . . , xn] by algebra homomorphisms given by permuting
the variables, and the set of polynomials invariant under this action form a subalgebra, as given in the
following definition:

Definition 2.2.1: Define Λn ⊂ C[x1, x2, . . . , xn] to be the subalgebra invariant under the action ofG = Sn :

Λn = C[x1, x2, . . . , xn]Sn .

Lemma 2.2.2: Let Λdn be the set of polynomials in Λn which are homogenous of degree d (homogeneous
means the sum of the degrees of each variable in each monomial is constant.) Then we have:

Λn =
⊕
d≥0

Λdn

Proof. We have

C[x1, x2, . . . , xn] =
⊕
d≥0

C[x1, x2, . . . , xn]d.

That is, the polynomial algebra C[x1, x2, . . . , xn] is graded with each summand being the homogeneous
degree d space. Since G = Sn acts linearly on C[x1, x2, . . . , xn], the result follows.

For an n-part composition α = (α1, α2, . . . , αn), αi ∈ Z≥0 we denote xα by the monomial

xα = xα1
1 · · ·xαnn .

We now define our first species of symmetric polynomial.

Definition 2.2.3: Fix an n-part partition λ = (λ1, . . . , λn). Define the symmetric polynomials {mλ} by:

mλ(x1, x2, . . . , xn) =
∑
µ∼λ

xµ.

Where the sum runs over all n-part compositions µ in the same Sn orbit as λ (Sn acts by permuting
parts). In other words, mλ is the ”orbit sum” of the xµ. For example: if λ = (2, 1, 0) and n = 3, then
mλ = x21x2 + x21x3 + x22x1 + x22x3 + x23x1 + x23x2.

Lemma 2.2.4: The {mλ} for all n-part partitions λ are a basis for Λn.
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Proof. First note that C[x1, . . . , xn] has a basis of monomials xµ = xµ1 · · ·xµnn for all n-part compositions
µ. Now take any f ∈ C[x1, . . . , xn]Sn = Λn. It is a linear combination of the {xµ} as previously mentioned,
and in particular since f is symmetric, the coefficient of xµ must be equal to the coefficient of xλ for λ ∼ µ.
Hence f is a linear combination of {mλ} as well, which shows the {mλ} span. To see linear independence
simply note that mλ = xλ +

∑
xµ where the sum runs over all the other µ such that µ ∼ λ. Since the {xλ}

are linearly independent, so are the {mλ}, which shows the {mλ} span and are also linearly independent,
and therefore they are a basis for Λn.

It follows from Lemma 2.2.4 that dim Λdn is the number of n-part partitions of d. We now define Λ, the
algebra of symmetric functions in infinitely many variables. We wish to make this idea of freely passing to
infinite variables precise, so we need some construction.

Consider the projection homomorphism Pn : Λdn+1 � Λdn defined by evaluating at xn+1 = 0. It can be
seen from the definition of mλ that under this map Pn we have that mλ is fixed if l(λ) ≤ n and mλ 7! 0
otherwise. We now define Λd via an inverse limit of vector spaces relative to the homomorphisms Pn:

Λd = lim −
n

Λdn

where elements of Λd are sequences (fn)n≥1 = (f1, f2, f3, . . . ) where fn ∈ Λdn and Pn(fn+1) = fn for all n.
In other words, to obtain an element f ∈ Λd, we need to find elements fn ∈ Λdn which have the property
that Pn(fn+1) = fn. An example of us going through this process of finding such elements for a specific
type of symmetric polynomial will be seen in Section 1.3. Now set

Λ =
⊕
d≥0

Λd

and we now have Λ = lim −Λn as an inverse limit of graded algebras, since Λn =
⊕
d≥0

Λdn (Lemma 2.2.2). The

graded algebra Λ is the algebra of symmetric functions countably infinite variables and we will need it to
proceed, as it is often useful to work with infinitely many variables. To go along with our {mλ}, we define
a few more species of symmetric functions. When working in n variables:

Definition 2.2.5: For r ≥ 0, the rth elementary symmetric function is

er = m(1r) =
∑

1≤i1<···<ir≤n

xi1xi2 · · ·xir ∈ Λn

Definition 2.2.6: For r ≥ 0, the rth complete homogeneous symmetric functions is

hr =
∑

1≤i1≤···ir≤n

xi1xi2 · · ·xir ∈ Λn

.
Definition 2.2.7: For r ≥ 1, the rth power sum symmetric function is

pr = m(r) =

n∑
i=1

xri ∈ Λn

Generating functions for these symmetric functions are very useful and will be given soon. If we want
to work in infinitely many variables, for example with elementary symmetric functions we can pass Λ by
defining the corresponding symmetric functions {eλ} for each partition λ by:

eλ = eλ1
eλ2
· · ·
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and when λ is an n-part partition we write eλ = eλ1eλ2 · · · eλn , and analogously for the other types of
symmetric functions.

Theorem 2.2.8: The {eλ} for all partitions λ with λ1 ≤ n form a basis of Λn.

Proof. Multiplying out the product eλ = eλ1eλ2 · · · eλn we obtain a sum of monomials each of which is of
the form:

(xi1xi2 · · ·xin)(xj1xj2 · · ·xjn) = xα

where i1 < i2 < · · · < iλ1
, j1 < j2 < · · · < jλ2

and so on up through λn. It can be observed that in
the Young diagram of λ, listing the numbers i1, i2, . . . iλ1

down the first column and j1, j2, . . . jλ2
down the

second, and so on, for each r ≥ 1 all of the symbols which are ≤ r must occur in the top r rows. This shows
that we have α1 + · · · + αr ≤ λ1 + . . . λr for each r ≥ 1, so α C λ. Let λT be the partition obtained by

reflecting the partition λ across its diagonal. Note that the monomial xλ
T

occurs exactly once by the above

argument, and our proof of Lemma 2.2.4 shows that xλ
T

occurs exactly once in mλT . This shows that mλT

occurs once in eλ so that we have:

eλ = mλT +
∑
νCλ

aλνmν

and since the {mλ} are a basis for Λn, the above expression for eλ shows that the {eλ} are a basis as well.

Note that from the above proof, we recover the fact that e(r) = m(1r) since as a partition, (r)T = (1r).

Theorem 2.2.9: C[e1, e2, . . . , en] ∼= Λn

Proof. Since the {mλ} are a basis for Λn and we have eλ = mλT +
∑
νCλ

aλνmν , as before it follows that the

{eλ} are also a basis for Λn. This shows that every element of Λn can be expressed as polynomial in the
{en}. In other words, Λn = C[e1, . . . , en].

It follows from Theorems 2.2.8 and 2.2.9 that when λ is an arbitrary partition, the {mλ} and {eλ} form
a basis of Λ. Before we continue, we need to define an involution ω which switches h’s and e’s. We need
some machinery for this. Recall that a generating function for some set of objects {ar} is a formal power
series in a dummy variable t such that the coefficients of the series are exactly the {ar}.

Lemma 2.2.10: For the rth complete symmetric functions hr =
∑
|λ|=r

mλ in infinitely many variables, the

generating function is:

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− xit)−1

Proof. Just note that (1−xit)−1 =
∑
k≥0

xki t
k and observe that when multiplying all of these series together,

the coefficient on tr will exactly be
∑
|λ|=r

mλ.
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Lemma 2.2.11: The generating function for the rth elementary symmetric function er in infinitely many
variables is given by:

E(t) =
∑
r≥0

ert
r =

∏
i≥1

(1 + xit)

Proof. To see that the coefficient on tr is er, observe that for each r, expanding out the product on the
right gives:

(1 + x1t)(1 + x2t)(1 + x3t) · · · (1 + xrt) = 1 + (x1 + x2)t+ . . . ,+(xi1xi2 · · ·xir )

since the sum runs over all r ≥ 0, any coefficient of tr will be obtained in this way for some sequence
i1 < · · · < ir, which exactly shows that the coefficient on tr is

∑
i1<···<ir

xi1xi2 · · ·xir = er.

Lemma 2.2.12:

H(t)E(−t) = 1 and

n∑
r=0

(−1)rerhn−r = 0.

Proof. H(t)E(−t) =
∏
i≥1

(1 − xit)(1 − xit)−1 = 1, which implies that
∑
r≥0

(−1)rert
r ·
∑
r≥0

hrt
r = 1. In other

words, the coefficient on every term besides the r = 0 term must be zero, hence
n∑
r=0

(−1)rerhn−r = 0.

Note that by Theorem 2.2.9, the stability of the inverse limit implies that Λ = C[e1, e2, . . . ]. Due to this
fact, it follows from Lemma 2.2.12 that Λ = C[h1, h2, . . . ] as well.

Theorem 2.2.13: The map

ω : Λ −! Λ

er 7−! hr

is an involution and an automorphism.

Proof. It is immediately an automorphism of algebras, as the {er} and {hr} both generate Λ. To see that it
is an involution, notice that Lemma 2.2.12 implies that ω(hr) = er, so ω(ω(er)) = ω(hr) = er, so ω2 = id.

The existence of the involution ω in Λ is one important advantage of Λ over Λn. The involution ω will come
up frequently, and along with our generating functions, it is an essential tool. We will see in Section 3.4
that working in an infinite power series ring in two variables is invaluable, and the generating functions for
our different families of symmetric functions become critical in order to prove one of the most important
results about Λ.
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2.3 Schur Polynomials and Schur Functions

As will be seen in Section 3, Schur Polynomials and Schur Functions play a key role in identifying the
irreducible CSn-modules. In this section we construct the Schur polynomials sλ ∈ Λn and use the inverse
limit to obtain the Schur functions sλ ∈ Λ.

To begin, let us recall how we defined Λn. Suppose we have n variables x1, x2, . . . , xn. Then there is a
natural action Sn

� C[x1, x2, . . . , xn] whereby Sn acts on the polynomial algebra by algebra automorphisms
permuting the variables:

g(xi) = xg(i), g ∈ Sn

and as defined before, the set of symmetric polynomials Λn are the polynomials which are fixed by this action.
Our goal is to construct a new type of symmetric polynomial in the following way: Let µ = (µ1, µ2, . . . , µn)
be any n-part composition, corresponding to the monomial xµ = xµ1xµ2 · · ·xµnn . We now wish to obtain an
anti-symmetric polynomial from xµ called Aµ. This is done by defining Aµ:

Aµ =
∑
g∈Sn

sgn(g) · g(xµ)

where g(xµ) is the action of g as defined above, and sgn is the sign (±1) of g (1 when g is composed of an
even number of transpositions and -1 when composed of an odd number of them).

Definition 2.3.1 A polynomial f ∈ C[x1, x2, . . . , xn] is anti-symmetric for all σ ∈ Sn if we have σ · f =
sgn(σ)f where Sn acts on the polynomial algebra C[x1, x2, . . . , xn] in the usual way.

Lemma 2.3.2: Aµ is anti-symmetric.

Proof. Let ω ∈ Sn. Then for every g ∈ Sn we have

ω(Aµ) =
∑
g∈Sn

ω[σ(g) · g(xµ)] =
∑
g∈Sn

σ(g) · (ω · g)(xµ).

We see that if ω is an even permutation then ω · g is even when g is even, and ω · g is odd when g is odd.
Thus when ω is even we have ω(Aµ) = Aµ Similarly if ω is odd then ω · g is odd when g is even, and ω · g
is even when g is odd, so in this case when ω is odd we have ω(Aµ) = −Aµ. Hence ω(Aµ) = sgn(ω)Aµ.

Note that Aµ = 0 unless µ1, . . . , µn are all distinct, since the instant two elements ui and uj aren’t distinct
the transposition (i, j) will collapse the sum. Thus it is without loss of generality to take µ1 > µ2 > · · · >
µn ≥ 0 and write µ = λ+ρ where λ is an arbitrary partition of at most n parts and ρ = (n−1, n−2, . . . , 1, 0).
We can now write:

Aµ = Aλ+ρ =
∑
g∈Sn

sgn(g) · g(xλ+ρ)

In other words, Aµ is the following determinant:

Aλ+ρ = det(x
λj−n+j
i ) = det(x

µj
i )
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= det


xµ1

1 xµ2

1 · · · xµn1
xµ1

2 xµ2

2 · · · xµn2
...

...
. . .

...
xµ1
n xµ2

n · · · xµnn


We recover the fact that Aµ = 0 when any of the parts of µ are indistinct as this would result is the above
matrix having two equivalent rows, giving a zero determinant. When we consider Aρ we obtain:

Aρ = det(xn−ji )

= det


xn−11 xn−21 · · · 1
xn−12 xn−22 · · · 1

...
...

. . .
...

xn−1n xn−2n · · · 1


This is now recognized to be the Vandermonde determinant:

Aρ =
∏

1≤i<j≤l

(xi − xj)

It’s clear from this product form of Aρ that it is another anti-symmetric polynomial. Before we can define
the Schur polynomials and the Schur functions {sλ} we need the following fact:

Lemma 2.3.3: Aλ+ρ is divisible by Aρ as polynomials in C[x1, x2, . . . , xn]. Furthermore, the quotient
Aλ+ρ
Aρ

is symmetric, i.e,
Aλ+ρ
Aρ
∈ Λn.

Proof. As previously noted, plugging in xi for any xj(j 6= i) in Aλ+ρ results in Aλ+ρ = 0. This means that
Aλ+ρ contains factors (xi − xj) for all i 6= j, and hence is divisible by their product which is exactly Aρ.
Then since both Aλ+ρ and Aρ are anti-symmetric their quotient must be symmetric.

Definition 2.3.4: Given a partition λ of length at most n, the corresponding Schur polynomial in n
variables sλ is defined as:

sλ ≡
Aλ+ρ
Aρ

To be clear, λ is a regular (infinite) partition with at most n parts (nonzero terms). We will now denote

the sλ by s
[n]
λ so as to specify when we are in the n variable setting. As before, by s

[n]
λ we mean the n-part

partition obtained by truncating all of the zeros, that is, keeping only the first n parts of λ. In order to
properly define the Schur function as opposed to the Schur polynomial in n variables we need to check that
what we will define as sλ is stable in Λ, which has infinitely many variables. First note the following:

Lemma 2.3.5: Recall the projection map Pn defined on page 15; It is an algebra homomorphism given

by equating the last variable xn+1 to zero. Under this map Pn we have s
[n+1]
λ 7! s

[n]
λ when the (n + 1)th

term of λ[n+1] is zero, and s
[n+1]
λ 7! 0 otherwise.

Proof. It is clear that if the (n+1)th term of λ[n+1] is nonzero, then Pn(s
[n+1]
λ ) = 0 since every monomial in

s
[n+1]
λ has an xn+1 in it. Otherwise, observe that if xn+1 7! 0, the determinant in Aλ+ρ takes the following

form:

= det


xµ1

1 xµ2

1 · · · 1
xµ1

2 xµ2

2 · · · 1
...

...
. . .

...
0 0 · · · 1
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Where as before µ = λ + ρ. The last column is all 1’s now because µn+1 = 0. Now expanding along the

bottom row to compute the determinant of this matrix just results in 1 · det(x
λj−n+j
i ), where this λ is now

an n part partition as oppose to an n + 1 part partition. This means that A
[n+1]
λ+ρ 7! A

[n]
λ+ρ. Since the final

entry of ρ is 0, ρ is fixed, and the result is:

Pn(s
[n+1]
λ ) =

A
[n+1]
λ+ρ

A
[n+1]
ρ

=
det(x

λj−n+j
i )

Aρ
=
A

[n]
λ+ρ

A
[n]
ρ

= s
[n]
λ

Since s
[n]
λ ∈ Λn is stable in Λ, we define the Schur function corresponding to λ (which has infinitely many

variables) in the following way:

Definition 2.3.6: For λ partition of length at most n, the associated Schur function is:

sλ ≡ lim − s
[n]
λ

where lim − is the inverse limit as defined in Section 2.2, i.e., to obtain sλ ∈ Λ it is well defined to allow the

partition λ[n] to pass to the infinite partition λ by adding an infinite string of zeros on the end.

The Schur functions give another basis for Λ (proven in 2.4) and they are central to the rest of this document.
Before we continue, we need a few more results. Let us once again work in n variables x1, . . . , xn. Let ekr
denote the elementary symmetric functions in the variables x1, . . . , xk−1, xk+1, . . . , xn and let M be the
n× n matrix with ij-entry (−1)n−jejn−i.

Lemma 2.3.7: Let α = (α1, α2, . . . , αn) be an n-part composition. Define the matrices Aα = (xαij ) for
i, j = 1, . . . , n, and Hα = (hαi−n+j) for i, j = 1, . . . , n. Then Aα = Hα ·M .

Proof. Using our generating function E(t), define

Ek(t) =

n−1∑
r=0

ekr t
r =

∏
i6=k

(1 + xit).

Now using our generating function H(t) we have

H(t)Ek(−t) =
∏
i≥1

∏
i 6=k

(1− xit)(1− xit)−1.

Note that this product equals 1 on every term except when i = k, which shows H(t)Ek(−t) = (1− xkt)−1.
Now applying a formal Taylor series:

H(t)Ek(−t) =
∑
r≥0

hrt
r ·

n−1∑
r=0

ekr t
r = 1 + xkt+ x2kt

2 + . . .

the above shows that the coefficient on tαi on the right hand side will be xαi and hence:

n∑
j=1

hαi−n+j · (−1)n−jekn−j = xαik

thus the ij entry in the matrix Aα is exactly the ij entry in Hα ·M , so Hα ·M = Aα.
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Theorem 2.3.8: aα = det(Aα) = Aρ
∑
σ∈Sn

sgn(σ)hα−σ(ρ).

Proof. By Lemma 2.3.7, if we take determinants we have det(Aα = det(Hα) · det(M). Notice that det(M)
must equal Aρ since when λ = (0, 0, . . . ) we have det(Hα) = det(Hρ) = 1. Thus aα = Aρ · det(Hα), so we
have

aα = Aρ
∑
σ∈Sn

sgn(σ)hα−σ(ρ)

.

Corollary 2.3.9: We have sλ =
∑
σ∈Sn

sgn(σ)hλ+ρ−σ(ρ).

Proof. By Theorem 2.3.8, if we let α = λ+ ρ and divide by Aρ we obtain

Aλ+ρ
Aρ

=
∑
σ∈Sn

sgn(σ)hλ+ρ−σ(ρ)

and the left hand side is the definition of sλ.

The above formula can be realized as a determinant of a matrix:

sλ = det


hλ1 hλ1+1 · · · hλ1+n−1
hλ2−1 hλ2 · · · hλ2+n−2

...
...

. . .
...

hλn−n+1 hλn−n+2 · · · hλn

 .

2.4 The Complex Inner Product on Λ

We now define a sesquilinear form on Λ (i.e., linear in the first component, antilinear in the second) by
having the bases {hλ} and {mλ} be dual to eachother:

Definition 2.4.1: The inner product 〈·, ·〉 on Λ is defined by:

〈hλ,mµ〉 = δλµ

for partitions λ, µ where δλµ is the Kronecker delta.

Before we prove orthogonality relations, we need some slightly technical results about generating functions
and a few lemmas. We closely follow Sections 1.2-1.4 of MacDonald [Mac79] for all of these results. As is
the goal of this document, we list only the necessary results from those Chapters so that we may quickly
bring our focus to the Kostka matrix.

Lemma 2.4.2: Recall that for each r ≥ 1, the rth power sum is defined as pr =
∑
i

xri = m(r). The

generating function for the {pr} is:

P (t) =
∑
i≥1

d

dt
log

1

1− xit
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and furthermore:

P (t) = H ′(t)/H(t)

Proof. By definition of P (t) and pr we have

P (t) =
∑
r≥1

prt
r−1 =

∑
i≥1

∑
r≥1

xri t
r−1.

Once again using a formal Taylor series:

P (t) =
∑
i≥1

xi
1− xit

Now just using log rules we obtain

P (t) =
d

dt
log
∏
i≥1

(1− xit)−1 =
d

dt
logH(t) = H ′(t)/H(t).

Recall our formula zλ for λ ` n and g an element of cycle type λ in Sn from Section 1:

zλ =
∏
i≥1

imi ·mi!

we showed in Section 1 that zλ = |C(gλ)|, the size of the centralizer of an element of cycle type λ in Sn.
This number is actually very crucial, and will come up a lot. In the realm of symmetric functions, we first
encounter it here:

Lemma 2.4.3:

H(t) =
∑
λ

z−1λ pλt
|λ|

Proof. From Lemma 2.4.2 we have d
dt logH(t) = P (t). Formally integrating P (t) =

∑
r≥1

prt
r−1 with respect

to t we obtain
∑
r≥1

prt
r

r = logH(t)⇒ H(t) = exp
∑
r≥1

prt
r/r. By exponent rules this is just

∏
r≥1

exp(prt
r/r).

Then a formal Taylor series yields:

∏
r≥1

∞∑
mr=0

(prt
r)mr/(rmr ·mr!)

which by observation is just
∑
λ

z−1λ pλt
|λ|.

Corollary 2.4.4: In the finite variable case we have

hn =
∑
λ`n

z−1λ pλ.

Proof. This follows immediately from Lemma 2.4.3.
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Lemma 2.4.5: Consider the expression
∏
i,j

(1− xiyj)−1 in the set of variables {xi}, {yj}. We have:

(1)
∏
i,j

(1− xiyj)−1 =
∑
λ

z−1λ pλ(x)pλ(y)

(2)
∏
i,j

(1− xiyj)−1 =
∑
λ

hλ(x)mλ(y) =
∑
λ

mλ(x)hλ(y)

(3)
∏
i,j

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y)

Proof. To prove (1), we recall that H(t) =
∏
i≥1

(1− xit)−1, so simply applying Lemma 2.4.3 to the variables

{yj} gives the result. For (2), we have

∏
i≥1

(1− xiyj)−1 =
∏
j

H(yj) =
∏
j

∞∑
r=0

hr(x)yrj =
∑
α

hα(x)yα =
∑
λ

hλ(x)mλ(y)

and following the same reasoning switching the variables xi and yj proves the second equality in (2). To
prove equation (3), work in two finite sets of variables {x1, . . . , xn} and {y1, . . . , yn}. As in Section 3, let
ρ = (n− 1, n− 2, . . . , 0), and aρ(x), aρ(y) be as in Theorem 2.3.8. Then by equation (2) we have

aρ(x)aρ(y)

n∏
i,j=1

(1− xiyj)−1 = aρ(x) · aρ(y) ·
∑
λ`n

hλ(x)mλ(y)

= aρ(x) ·
∑
µ

∑
σ∈Sn

hµ(x)sgn(σ) · yµ+σ(ρ)

= aρ(x) ·
∑
β

∑
σ∈Sn

sgn(σ)hβ−σ(ρ)(x)yβ

=
∑
β

aβ(x)yβ

where the sum in line 2 is over µ an n-part composition, and equality holds by Theorem 2.3.8. Now since
aσ(β) = sgn(σ)aβ , we may re-index the sum to be over λ an n-part partiton to obtain:

∑
β

aβ(x)yβ =
∑
λ

aλ+ρ(x)aλ+ρ(y) = aρ(x)aρ(y)
∑
λ

sλ(x)sλ(y)

Hence
n∏

i,j=1

(1− xiyj)−1 =
∑
λ

sλ(x)sλ(y).

Lemma 2.4.6: Let {uλ}, {vλ} be bases of Λdn indexed by partitions λ ` d for each d ≥ 0. Then the
following are equivalent:

(1) 〈uλ, vλ〉 = δλµ for all λ, µ

(2)
∑
λ

uλ(x)vλ(y) =
∏
i,j

(1− xiyj)−1
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Proof. Since the {hr} and {mλ} are bases we may write uλ =
∑
ρ
aλρhρ and vµ =

∑
σ
bµσmσ. By definition of

the inner product we see that 〈uλ, vµ〉 =
∑
ρ
aλρbµρ ⇒ (1) is equivalent to

∑
ρ
aλρbµρ = δλµ. Now note that

by the second equation from Lemma 2.4.5, we have that (2) is the same as
∑
λ

uλ(x)vλ(y) =
∑
ρ
hρ(x)mρ(y),

and by matching coefficients this is the same as
∑
λ

aλρbλσ = δρσ, which shows that (1) and (2) are equivalent.

Theorem 2.4.7 : We have the following orthogonality relations:

〈sλ, sµ〉 = δλµ, 〈pλ, pµ〉 = zλδλµ

.

Proof. By Lemma 2.4.5 equation (1) we know that
∏
i,j

(1− xiyj)−1 =
∑
λ

z−1λ pλ(x)pλ(y), so applying Lemma

2.4.6 shows that 〈pλ, pµ〉 = δλµzλ. Similarly by Lemma 2.4.5 equation (3) we have
∏
i,j

(1 − xiyj)
−1 =∑

λ

sλ(x)sλ(y), so once again by Lemma 2.4.6 we have 〈sλ, sµ〉 = δλµ.

Theorem 2.4.7 shows that the {sλ} are an orthonormal basis for Λ, and the {pλ} are an orthogonal basis
for Λ.

2.5 The Kostka Matrix

The goal of this section is to prove Young’s rule, which yields a transition matrix between the two bases
{sλ} and {mλ}. Once this matrix is obtained, as will be seen in a future chapter, it will allow us to compute
the irreducible characters of Sn for any n and obtain its character table. Before we prove Young’s rule we
need a few results.

Lemma 2.5.1: (Pieri Formula)

sλ · er =
∑
µ

sµ

where the sum runs over all partitions µ which are obtained by adding r 1’s to λ, i.e, adding a box to the
end of r different rows in the Young diagram of λ.

Proof. By definition of sλ we have sλ =
Aλ+ρ
Aρ

, so we want to show
Aλ+ρ
Aρ
· er =

∑
µ
sµ, which is the same

as showing Aλ+ρ · er =
∑
µ
sµAρ. But once again using the definition of sµ the sum just becomes

∑
µ
Aµ+ρ.

Thus we seek to show:

Aλ+ρ · er =
∑
µ

Aµ+ρ

By the alternative definition of determinant and rewriting {er}:

Aλ+ρ · er =
∑
g∈Sn

sgn(g)xg(λ+ρ) ·
∑
α

xα
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where αi ∈ {0, 1}, |α| = r, α an n-part partition. Then:

Aλ+ρ · er =
∑
g∈Sn

sgn(g)xg(λ+ρ) ·
∑
α

xα

=
∑
g∈Sn

∑
α

sgn(g)xg(λ+ρ)xg(α)

=
∑
α

∑
g∈Sn

sgn(g)xg(λ+α+ρ)

=
∑
α

Aλ+α+ρ

Where the second equality holds due to the fact that {xα} equals {xg(α)} as sets, and the last equality by
definition of the determinant again. Now note that since α is comprised of 0’s and 1’s, by definition of the
µ partitions we have that the λ+ α partitions are exactly the µ’s. Hence:

Aλ+ρ · er =
∑
µ

Aµ+ρ

and we are done.

Corollary 2.5.2 : We have

sλ · hr =
∑
µ

sµ

where the sum runs over all partitions µ obtained from λ by adding a box to the bottom of r different
columns.

Proof. Just apply the involution ω as defined in Theorem 2.2.13 to er in Lemma 2.5.1.

Definition 2.5.3: Let λ be a partition and let h∗r : Λ −! Λ be the linear map defined by:

h∗r(sλ) =
∑
µ

sµ

where the sum runs over all partitions µ obtained from λ by removing a box from the bottom of r different
columns.

Lemma 2.5.4: The map h∗r is adjoint to multiplication by hr with respect to 〈·, ·〉, i.e:

〈f, hrg〉 = 〈h∗r(f), g〉

Proof. It suffices to check this condition for f = sλ, λ ` d+ r and g = sµ, µ ` d, that is:

〈h∗r , sµ〉 = 〈sλ, hr · sµ〉
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Note that by Corollary 2.5.2, the right hand side is just 〈sλ,
∑
µ
sµ〉, where this sum runs over the µ’s which

add a box to the bottom of r different columns. By orthogonality this is entirely zero unless λ can be
obtained from µ in this way, and in that case it is 1. The left hand side is 〈

∑
µ
sµ, sµ〉, but in this case the

sum runs over µ’s by removing boxes from λ. This means that the left hand side is again zero unless λ can
be obtained from µ by adding a box to r different rows. Thus the left and right hand sides are the exact
same.

Definition 2.5.5: Let λ be a partition and µ a composition. The Kostka number Kλµ is the number of
semistandard tableaux of shape λ and content µ.

Example: Let λ = (3, 2) ` 5 and let µ = (2, 2, 1). Then to count the number of semistandard Young tableau
with shape (3, 2) and content (2, 2, 1), we must fill in the Young tableau corresponding to λ with two 1’s,
two 2’s, and one 3

such that the rows are weakly increasing and the columns are strictly increasing. We must put a 1 in the
top left, since anything else in that spot would lead to us violating strictly increasing columns, and then it
follows that the other 1 must go to the right of the previous. Furthermore, we see that we must place a 2
below the top left 1 so as to follow the same rule. At this point we have

1 1

2

and now its clear that the remaining 2 can go in either slot, and the same case for the 3. So there are two
total semistandard young tableaux of shape λ = (3, 2) and content µ = (2, 2, 1) :

1 1 2

2 3

1 1 3

2 2

so in this case Kλµ = 2.

Theorem 2.5.6:

〈sλ, hµ〉 = Kλµ.

Proof. First, by Lemma 2.5.4, we may write 〈sλ, hµ〉 as 〈sλ, hµ1
hµ2
· · ·hµl〉 = 〈h∗µlh

∗
µl−1
· · ·h∗µ1

(sλ), 1〉. Note
that 1 = s∅, and each application of h∗r in the inner product removes a box from µi rows in λ. Then
since

∑
i

µi is the number of boxes in λ, this means that the process of applying h∗r will eventually result

in k · 〈s∅, s∅〉, k ∈ Z≥0. By orthonormality of the Schur functions this is just k. It remains to show that
k = Kλµ. We show this with the following process:
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Applying h∗µl , we obtain some new number of λ diagrams with a box removed from the bottom of µl different
columns. Replace this box with the number l. Continue this process for µ2, µ3, and so on, replacing the
removed boxes with the numbers l − 1, l − 2, etc. It is clear that all of the resulting tableaux from this
process will have weakly increasing rows. But in fact, the columns will also be strictly increasing. This
is because of the definition of h∗r : we require that the boxes be removed from distinct columns. Thus the
tableaux which could be obtained by removing boxes in the same column are not counted, which means
we will never have a stacking of the same number on top of eachother among our sum of tableaux. This
exactly yields only tableaux which have strictly increasing columns. Hence our final integer k is precisely
the number of semistandard λ-tableaux with content µ.

We now have what we need to prove Young’s rule.

Theorem 2.5.7 (Young’s Rule):

sλ =
∑
µ

Kλµmµ

for a partition λ and a composition µ.

Proof. Since the mµ are a basis for Λ, we may write sλ =
∑
ν
aλνmν for some unknown coefficients aλν

indexed by compositions ν. Computing the inner product with hµ on the left and right hand sides gives:

〈sλ, hµ〉 =
∑
ν

aλν〈mν , hµ〉

The left hand side is Kλµ as given by Theorem 2.5.6, and by definition of 〈·, ·〉 on Λ the right hand side is∑
ν
aλνδµν which is just aλµ. Hence our coefficients aλµ are exactly Kλµ, which proves Young’s Rule.

Corollary 2.5.8: If working in n variables we have:

sλ =
∑
T

xcont(T ) ∈ Λn

Where λ is an n part partition, the sum runs over all semistandard λ−tableaux T , and

xcont(T ) = xµ1

1 xµ2

2 · · ·xµnn
where µi is the number of i′s in T .

Proof. By Young’s Rule we have sλ =
∑
µ
Kλµmµ for λ, µ both n-part partitions. Note that when in n

variables we may write mµ =
∑
ν∼µ

xν . Using this re-indexes our sum:

sλ =
∑
µ

Kλµmµ =
∑
µ′

Kλµ′x
µ′

The sum on the right hand side is now indexed by n-part compositions as a result. Furthermore our
coefficients are Kλµ, which shows that we exactly have:
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sλ =
∑
T

xcont(T )

Young’s Rule gives us a transition matrix (Kλµ) from the basis {mλ} to {sµ}, called the Kostka Matrix.
It is indexed by partitions and is uni-triangular. The Kostka Matrix will be elaborated upon in Section 3
where it comes into play. For now, here are some examples of Kostka matrices for n = 3, 4, 5, 6 :

(3) (2,1) (1,1,1)( )
(3) 1 1 1

(2,1) 0 1 2
(1,1,1) 0 0 1

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)


(4) 1 1 1 1 1
(3,1) 0 1 1 2 3
(2,2) 0 0 1 1 2

(2,1,1) 0 0 0 1 3
(1,1,1,1) 0 0 0 0 1

(5) (4,1) (3,2) (3,1,1) (2,2,1) (2,1,1,1) (1,1,1,1,1)



(5) 1 1 1 1 1 1 1
(4,1) 0 1 1 2 2 3 4
(3,2) 0 0 1 1 2 3 5

(3,1,1) 0 0 0 1 1 3 6
(2,2,1) 0 0 0 0 1 2 5

(2,1,1,1) 0 0 0 0 0 1 4
(1,1,1,1,1) 0 0 0 0 0 0 1

(6) (5,1) (4,2) (4,1,1) (3,3) (3,2,1) (3,1,1,1) (2,2,2) (2,2,1,1) (2,1,1,1,1) (1,1,1,1,1,1)



1 1 1 1 1 1 1 1 1 1 1
0 1 1 2 1 2 3 2 3 4 5
0 0 1 1 1 2 3 3 4 6 9
0 0 0 1 0 1 3 1 3 6 10
0 0 0 0 1 1 1 1 2 3 5
0 0 0 0 0 1 2 2 4 8 16
0 0 0 0 0 0 1 0 1 4 10
0 0 0 0 0 0 0 1 1 2 5
0 0 0 0 0 0 0 0 1 3 9
0 0 0 0 0 0 0 0 0 1 5
0 0 0 0 0 0 0 0 0 0 1
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3 The Characteristic Map

3.1 The Space of Class Functions, R(Sn)

How do we proceed in using Λ to identify the irreducible characters of the symmetric group in general? This
section is dedicated to constructing the “characteristic map”, which will lead to a correspondence between
irreducible characters of Sn and one of our bases for Λ.

Definition 3.1.1: Let f : Sn ! C be a function which is constant on the conjugacy classes of Sn. As in
Section 1, we denote the set of all such functions for a fixed n by R(Sn).

With addition and scalar multiplication defined pointwise, R(Sn) is a vector space over C. Observe that
dimR(Sn) = p(n), as the number of conjugacy classes in the symmetric group is p(n). Recall our indicator
functions from Section 1 (page 5):

δµ(gλ) =

{
1 if λ = µ

0 else

where gλ ∈ Sn is an element of cycle type λ, and µ ` n. It is clear that this is a basis for R(Sn) from its
definition. We also want to define an inner product on R(Sn): this will be the standard inner product for
characters (recall this from Definition 1.3.1).

Proposition 3.1.2: The indicator functions are orthogonal with respect to the above form, with

〈δµ, δµ〉 =
1

zµ
.

Proof. If we take λ 6= µ, we have 〈δµ, δλ〉 = 1
n!

∑
g∈Sn

δµ(g)δλ(g). But for each conjugacy class, one of δµ or

δλ must be zero on that class since λ 6= µ, so 〈δµ, δλ〉 = 0 in this case. If λ = µ, then

〈δµ, δµ〉 =
1

n!

∑
g∈Sn

δµ(g)δµ(g) =
1

n!

∑
g∈Cµ

1 =
|Cµ|
n!

=
1

zµ
.

where the last equality holds by Orbit-Stabilizer theorem (with conjugation action) and by our proof of
Lemma 1.4.3 that zµ is the size of the centralizer of an element of cycle type µ (centralizer is the stabilizer
in this case). Thus 〈δµ, δµ〉 = 1

zµ
.

Definition 3.1.3: The nth characteristic map is defined as:

chn : R(Sn)! Λn

χ 7!
∑
µ`n

z−1µ χ(gµ)pµ

where gµ is an element of cycle type µ and χ(gµ) is the evaluation of χ on gµ, and zµ is as defined for
Proposition 1.4.3. We now have the following result:

Theorem 3.1.4: chn is an isometric isomorphism of vector spaces.
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Proof. It’s clear that chn is linear. Note that chn(δµ) = 1
zµ
pµ, so chn sends a basis to a basis bijectively,

and thus is an isomorphism of vector spaces. It suffices to check that chn is an isometry by checking the
inner product on a basis. By Proposition 3.1.2 we have

〈δλ, δµ〉 = δλµ
1

zλ
=

〈
pλ
zλ
,
pµ
zµ

〉
= 〈chn(δλ), chn(δµ)〉

since chn(δλ) = pλ
zλ

and 〈pλ, pµ〉 = zλδλµ. Thus chn is both an isomorphism of vector spaces and an isometry.

3.2 The Characteristic Map

Let us define

R =
⊕
n≥0

R(Sn).

The space R(Sn) is an algebra with pointwise multiplication corresponding to the tensor product as in
Section 1.5. We will define a new “external” product ◦ on R, so that R may be viewed as a graded algebra
with respect to ◦ instead.

Note that if χ and ψ are characters of Sn and Sm respectively, then χ�ψ is a character of Sn×Sm ≤ Sn+m,
where (χ� ψ)(g, h) = χ(g)ψ(h). This motivates the next construction:

Definition 3.2.1 (Induction and Restriction): Let H ≤ Sn and let χ be a class function on Sn. We
can form a class function on H via the map

χ#H(h) = χ(h)

which is called the restriction of χ to H ≤ Sn. Similarly, if ψ is instead a class function on H, we can form
a class function on Sn via the map

ψ"Sn(g) =
1

|H|
∑
x∈G

ψ(x−1gx)

which sets ψ(y) = 0 for y /∈ H. This is called the induction of ψ to Sn. Thus, if χ and ψ are characters of
Sn and Sm respectively, we can define a multiplication in R by

χ ◦ ψ = (χ� ψ)"Sn+m

and bilinearly extending.

Let χ : Sn ! Λn and ψ : Sn ! Λn. Define 〈·, ·〉′ by

〈χ, ψ〉′ ≡ 1

n!

∑
g∈Sn

χ(g)ψ(g−1).

Since g and g−1 are in the same conjugacy class, if χ is a class function then

chn(χ) =
1

n!

∑
g∈Sn

χ(g)pg = 〈χ, p〉′
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where p is the function which takes gλ ∈ Sn of cycle type λ to pλ ∈ Λn. It follows by Frobenius reciprocity
(see for example Chapter 24 of [BK18]), in this setting we have

〈ψ"Sn , χ〉′ = 〈ψ, χ#G〉′.

This will be needed in a moment!

Definition 3.2.2: The characteristic map is:

ch : R −! Λ

defined to be chn on each degree n summand. In other words, we are defining ch to be the map
⊕
n≥0

chn

since we know that Λ =
⊕
n≥0

Λn. This map is an isomorphism of vector spaces, and is an isometry, and in

fact, its an isomorphism of algebras with respect to ◦.

Theorem 3.2.3 The characteristic map

ch : R −! Λ

is an isomorphism of algebras for the multiplication ◦ defined on R above.

Proof. By Theorem 3.1.4, we need only show that ch is multiplicative, that is, ch preserves the ring structure.
Let χ and ψ be characters of Sn and Sm respectively. Then

ch(χ ◦ ψ) = 〈χ ◦ ψ, p〉′

= 〈(χ� ψ)"Sn+m , p〉′

= 〈χ� ψ, p#Sn×Sm〉′

=
1

n!m!

∑
τσ∈Sn×Sm

(χ� ψ)(τσ)pτσ

=
1

n!m!

∑
τ∈Sn,σ∈Sm

χ(τ)ψ(σ)pτpσ

=

(
1

n!

∑
τ∈Sn

χ(τ)pτ

)(
1

m!

∑
σ∈Sm

ψ(σ)pσ

)
= ch(χ) · ch(ψ).

Lemma 3.2.4: Let 1n be the trivial character of Sn. Then ch(1n) = hn.

Proof. By definition of the characteristic map and Corollary 2.4.4 we have ch(1n) =
∑
λ`n

z−1λ pλ = hn.

Example: If λ = (λ1, λ2, λ3, . . . ) is a partition of n, then 1λ = 1λ1
◦ 1λ2

◦ · · · is the character of Sn coming
from the character induced by the identity character of Sλ = Sλ1

× Sλ2
× · · · , and since the characteristic

map preserves multiplication we have
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ch(1λ) = ch(1λ1 ◦ 1λ2 ◦ · · · ) = ch(1λ1) · ch(1λ2) · · · = hλ1 · hλ2 · · · = hλ.

We are now just about ready to identify the irreducible characters of the symmetric group. First, note by
Corollary 2.3.9, for each partition λ ` n we obtain the following determinantal formula:

sλ = det(hλi−i+j)

where 1 ≤ i ≤ n indexes rows and 1 ≤ j ≤ n indexes columns. Now define the character χλ to be

χλ = det(1λi−i+j)

where 1λ is as above. Note that the above shows that χλ is a virtual character, i.e., a Z−linear combination
of irreducible characters. We now have our big theorem:

Theorem 3.2.5: The irreducible characters of Sn are exactly the collection of all χλ for λ ` n.

Proof. Since ch(1λ) = hλ, and the characteristic map is an algebra isomorphism, this implies

ch(χλ) = ch(det(1λi−i+j)) = det(hλi−i+j) = sλ.

Observe: since the Schur polynomials are orthonormal and the characteristic map is an isometry we have
〈χλ, χµ〉 = δλµ, and since χλ is a virtual character with unit norm, it is therefore plus or minus an irreducible
character.

Since the number of conjugacy classes in Sn is equal to the number of partitions of n, the {χλ} make up
all of the irreducible characters (since the number of irreducible characters is the number of partitions).
However, it remains to show for an irreducible character χλ that −χλ is not an irreducible character. It
suffices to show that χλ(1) > 0. By definition of the characteristic map we have

sλ = ch(χλ) =
∑
µ`n

z−1µ χλ(gµ)pµ

so taking the inner product 〈·, pµ〉 of both sides, by Theorem 2.4.7 we have

〈sλ, pµ〉 = χλµ

where χλµ is the value of χλ on an element of cycle type µ, so on the identity element we have

χλ(1) = χλ1n = 〈sλ, pn1 〉

and therefore hn1 = pn1 =
∑
λ`n

χλ(1)sλ. Since the {mλ} and {hλ} are dual and the Schur polynomials are self

dual, the change of basis matrix from {hλ} to {sλ} has coefficients which are elements of Kλµ. In particular
χλ(1) = Kλ,1n > 0 since the column 1n is the right most column in the Kostka matrix.

Note that in the above proof, we stumbled upon the fact that χλ(1) = Kλ,1n , the number of semi-standard
tableaux of shape λ and content (1, 2, . . . , n). Since the content is just {1, 2, . . . , n}, this is the same as the
number of standard tableaux of shape λ. This is given by the famous hook length:
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fλ =
n!∏
hλ(i, j)

where fλ is the number of standard tableau of shape λ, and hλ(i, j) is the ”hook length” at note (i, j) in the
corresponding young diagram. In particular, this formula gives the dimension of the irreducible character
of Sn corresponding to partition λ under the characteristic map - so this formula allows one to compute all
the dimensions of the irreducible characters rather easily.

Example: If λ = (3, 2, 1) ` 6, then the ”hook” of the node (1,1) has length 5, as shown below:

• • •
•
•

In particular if we compute all the lengths and divide n! by their product we obtain

fλ =
6!

5 · 3 · 3 · 1 · 1 · 1
= 16

which agrees with our λ = (3, 2, 1), µ = (1n) entry of the Kostka matrix for n = 6 from the end of Section
2.

At this point, we are finally able to return to computing character tables of the symmetric group!

3.3 The Character Table of the Symmetric Group

Let M(p, s) denote the transition matrix between the basis {sλ} and {pλ}, and analogously for the other
bases of Λ. That is, we denote by M(p, s) the matrix (Mλµ) with rows indexed by λ and columns µ, whose
coefficients come from the equation

pλ =
∑
µ

Mλµsµ.

We emphasize that in this notation M(p, s), we are regarding this matrix as acting on row vectors by right
multiplication.

Theorem 3.3.1: The character table of Sn is the transition matrix M(p, s).

Proof. In our proof of Theorem 3.2.5 we showed that 〈sλ, pµ〉 = χλµ where χλ was an irreducible character
Sn evaluated on the class µ. This is equivalent to

pµ =
∑
λ

χλµsλ

which exactly says that each column of the transition matrix M(p, s) runs through all of the irreducible
character values on the class µ. Thus M(p, s) is the character table of Sn.

So, computing the character table of Sn boils down to computing the change of basis matrix between power
sum symmetric functions and Schur functions. Recall that the Kostka matrix K from Section 2.5 gives the
transition matrix from Schur functions to monomial symmetric functions, so

K = M(s,m).
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Therefore, if we wish to compute M(p, s), we must compute the matrix L = M(p,m), since then:

M(p, s) = M(p,m) ·M(m, s) = LK−1

so that the character table of Sn is just LK−1. As before with the Kostka matrix, the matrix L has rows
indexed by partitions λ and columns by compositions µ. Note that as mentioned before, the above does
not make sense unless we think of these matrices as acting on row vectors on the right.

To compute this matrix L, first write pλ =
∑
µ
Lλµmµ. Since mλ =

∑
µ∼λ

xµ, we see that Lλµ is the coefficient

of xµ in pλ.

Example: When n = 3, we have possible partitions (1, 1, 1), (2, 1), and (3). Then:

p(1,1,1) = p31 = (x1 + x2 + x3)3 = x31 + 3x21x2 + 3x21x3 + 3x1x
2
2 + 3x1x

2
3 + 6x1x2x3 + x32 + x33 + 3x2x

2
3 + 3x22x3

p(2,1) = p2p1 = (x21 + x22 + x23)(x1 + x2 + x3) = x31 + x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x32 + x33 + x2x

2
3 + x22x3

p(3) = p3 = x31 + x32 + x33

One can see that for λ = (1, 1, 1), when µ = (3) we have Lλµ = 1, when µ = (2, 1) we have Lλµ = 3,
and when µ = (1, 1, 1) we have Lλµ = 6. If we continue reading off coefficients in this manner, and use the
lexicographic ordering on our rows and columns, we obtain

L =

1 0 0
1 1 0
1 3 6


so this is our L matrix for n = 3. We can see that in this case L is lower triangular, and in fact, L is lower
triangular in general (we won’t prove this). If we take the inverse our Kostka matrix for n = 3 from the
end of Section 2 and multiply on the left by L we obtain:

LK−1 =

1 0 0
1 1 0
1 3 6

 ·
1 1 1

0 1 2
0 0 1

−1 =

1 −1 1
1 0 −1
1 2 1


After taking transpose and swapping some rows and columns around, we find that:

LK−1 ∼

1 1 1
1 −1 1
2 0 −1


which matches our character table of S3 from Section 1! The fact that we had to shuffle some rows and
columns around and take transpose might bother you. It shouldn’t; the transpose is simply because we
prefer to write character tables with the characters on the rows, and in our M(p, s) notation, these matrices
were acting on row vectors on the right instead of our usual column vector notation, and as a result the
initial LK−1 has its characters in columns instead (note the trivial character in the left most column.)
The row and column operations should be more obvious: our initial character tables were not listed in
lexicographic ordering so that our columns were out of order. Furthermore, from the characteristic map we
obtained a particular partition λ corresponding to each character χλ, and back when we made our character
tables our characters were not indexed with respect to this correspondence. One can check that if you make
these changes to our old character table of S3, you recover the initial LK−1 matrix. It is easy to tell a
computer to compute the coefficients {Lλµ}, so let’s list the L matrices for n = 4, 5, 6 and work out LK−1

using our old Kostka matrices from the end of Section 2:
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n = 4 : L =


1 0 0 0 0
1 1 0 0 0
1 0 2 0 0
1 2 2 2 0
1 4 6 12 24

 LK−1 =


1 −1 0 1 −1
1 0 −1 0 1
1 −1 2 −1 1
1 1 0 −1 −1
1 3 2 3 1

 ∼


1 1 1 1 1
1 −1 1 −1 1
3 1 0 −1 −1
3 −1 0 1 −1
2 0 −1 0 2



n = 5 : L =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 2 1 2 0 0 0
1 1 2 0 2 0 0
1 3 4 6 6 6 0
1 5 10 20 30 60 120


LK−1 =



1 −1 0 1 0 −1 1
1 0 −1 0 1 0 −1
1 −1 1 0 −1 1 −1
1 1 −1 0 −1 1 1
1 0 1 −2 1 0 1
1 2 1 0 −1 −2 −1
1 4 5 6 5 4 1



∼



1 1 1 1 1 1 1
1 −1 1 1 −1 1 −1
4 2 0 1 −1 −1 0
4 −2 0 1 1 −1 0
5 1 1 −1 1 0 −1
5 −1 1 −1 −1 0 1
6 0 −2 0 0 1 0



n = 6 : L =



1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
1 2 1 2 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 0 0 0
1 1 1 0 2 1 0 0 0 0 0
1 3 3 6 2 3 6 0 0 0 0
1 0 3 0 0 0 0 6 0 0 0
1 2 3 2 4 4 0 6 4 0 0
1 4 7 12 8 16 24 18 24 24 0
1 6 15 30 20 60 120 90 180 360 720



LK−1 =



1 −1 0 1 0 0 −1 0 0 0 −1
1 0 −1 0 0 1 0 0 −1 0 1
1 −1 1 0 −1 0 0 −1 1 −1 1
1 1 −1 0 −1 0 0 1 1 −1 −1
1 −1 0 1 2 −2 1 2 0 −1 1
1 0 0 −1 1 0 1 −1 0 0 −1
1 2 0 1 −1 −2 1 −1 0 2 1
1 −1 3 −2 −3 0 2 3 −3 1 −1
1 1 1 −2 1 0 −2 1 1 1 1
1 3 3 2 1 0 −2 −1 −3 −3 −1
1 5 9 10 5 16 10 5 9 5 1


In the case of n = 4, 5, the matrix we obtain after properly ordering the rows and columns matches our
character tables for S4 and S5 in Section 1! For n = 6, we did not make the character table in Section 1

35



because n = 5 had already became an arduous task - but here it is above now using these L and K matrices.
For a sanity check, note that reading off the bottom row we have

12 + 52 + 92 + 102 + 52 + 162 + 102 + 52 + 92 + 52 + 12 = 720 = |S6|

as we would hope.

As stated before, the calculation of the L and K matrices, as well as the direct calculation of the character
table Sn, is made easy with the help of a computer, namely a few lines of code in Sage:

[2]: Sym = SymmetricFunctions(QQ)

s = Sym.schur()

m = Sym.monomial()

p = Sym.power()

#s,m,p symmetric functions

from sage.combinat.sf.sfa import zee

#z lambda formula

sage.matrix.constructor.Matrix()

def oppdiag(num):

table = []

for i in range(num):

row = [0]*(num-1)

row.insert(num-i-1, 1)

table.append(row)

diag = Matrix(table)

return(diag)

#makes opposite diagonal matrix

def CharacterTable(n):

num = len(Partitions(n))

diag = oppdiag(num)

table = []

for la in Partitions(n):

row = []

for mu in Partitions(n):

row.append(s(la).scalar(p(mu)))

table.append(row)

char = Matrix(table)*diag

return(char)

#makes character table of S_n

def L(n):

table = []

for la in Partitions(n):

row = []
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for mu in Partitions(n):

row.append(m(la).scalar(p(mu))*zee(mu)^(-1))

table.append(row)

L = Matrix(table)

lower = L.inverse()

return(lower)

#makes L matrix

def K(n):

table = []

for la in Partitions(n):

row = []

for mu in Partitions(n):

row.append(m(la).scalar(s(mu)))

table.append(row)

K = Matrix(table)

kostka = K.inverse()

return(kostka)

#makes Kostka matrix

#s.transition_matrix(m,5)

#p.transition_matrix(m,5)

#the above also give the desired transitions maps

print(K(6))

print("--------------")

print(L(6))

M = L(6)*K(6)^(-1)

print("--------------")

print(M)

print("--------------")

print(CharacterTable(6))

[ 1 1 1 1 1 1 1 1 1 1 1]

[ 0 1 1 2 1 2 3 2 3 4 5]

[ 0 0 1 1 1 2 3 3 4 6 9]
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[ 0 0 0 1 0 1 3 1 3 6 10]

[ 0 0 0 0 1 1 1 1 2 3 5]

[ 0 0 0 0 0 1 2 2 4 8 16]

[ 0 0 0 0 0 0 1 0 1 4 10]

[ 0 0 0 0 0 0 0 1 1 2 5]

[ 0 0 0 0 0 0 0 0 1 3 9]

[ 0 0 0 0 0 0 0 0 0 1 5]

[ 0 0 0 0 0 0 0 0 0 0 1]

--------------

[ 1 0 0 0 0 0 0 0 0 0 0]

[ 1 1 0 0 0 0 0 0 0 0 0]

[ 1 0 1 0 0 0 0 0 0 0 0]

[ 1 2 1 2 0 0 0 0 0 0 0]

[ 1 0 0 0 2 0 0 0 0 0 0]

[ 1 1 1 0 2 1 0 0 0 0 0]

[ 1 3 3 6 2 3 6 0 0 0 0]

[ 1 0 3 0 0 0 0 6 0 0 0]

[ 1 2 3 2 4 4 0 6 4 0 0]

[ 1 4 7 12 8 16 24 18 24 24 0]

[ 1 6 15 30 20 60 120 90 180 360 720]

--------------

[ 1 -1 0 1 0 0 -1 0 0 1 -1]

[ 1 0 -1 0 0 1 0 0 -1 0 1]

[ 1 -1 1 0 -1 0 0 -1 1 -1 1]

[ 1 1 -1 0 -1 0 0 1 1 -1 -1]

[ 1 -1 0 1 2 -2 1 2 0 -1 1]

[ 1 0 0 -1 1 0 1 -1 0 0 -1]

[ 1 2 0 1 -1 -2 1 -1 0 2 1]

[ 1 -1 3 -2 -3 0 2 3 -3 1 -1]

[ 1 1 1 -2 1 0 -2 1 1 1 1]

[ 1 3 3 2 1 0 -2 -1 -3 -3 -1]

[ 1 5 9 10 5 16 10 5 9 5 1]

--------------

[ 1 1 1 1 1 1 1 1 1 1 1]

[ 5 3 1 -1 2 0 -1 1 -1 0 -1]

[ 9 3 1 3 0 0 0 -1 1 -1 0]

[10 2 -2 -2 1 -1 1 0 0 0 1]

[ 5 1 1 -3 -1 1 2 -1 -1 0 0]

[16 0 0 0 -2 0 -2 0 0 1 0]

[10 -2 -2 2 1 1 1 0 0 0 -1]

[ 5 -1 1 3 -1 -1 2 1 -1 0 0]

[ 9 -3 1 -3 0 0 0 1 1 -1 0]

[ 5 -3 1 1 2 0 -1 -1 -1 0 1]

[ 1 -1 1 -1 1 -1 1 -1 1 1 -1]

The K(n) and L(n) functions make the L and K matrices, which can also be obtained by just using the
commented out transition matrix commands. The character table function creates the character table. It
aligns the characters in rows and reorders the columns in reverse lexicographic order so that the degree
appears on the far left. The rows are in lexicographic order based on the corresponding partitions for each
character inherited from the characteristic map. For fun, here is the character table of S7 using our Sage
code:
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[ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]

[ 6 4 2 0 3 1 -1 0 2 0 -1 1 -1 0 -1]

[14 6 2 2 2 0 2 -1 0 0 0 -1 1 -1 0]

[15 5 -1 -3 3 -1 -1 0 1 -1 1 0 0 0 1]

[14 4 2 0 -1 1 -1 2 -2 0 1 -1 -1 0 0]

[35 5 -1 1 -1 -1 -1 -1 -1 1 -1 0 0 1 0]

[20 0 -4 0 2 0 2 2 0 0 0 0 0 0 -1]

[21 1 1 -3 -3 1 1 0 -1 -1 -1 1 1 0 0]

[21 -1 1 3 -3 -1 1 0 1 -1 1 1 -1 0 0]

[35 -5 -1 -1 -1 1 -1 -1 1 1 1 0 0 -1 0]

[15 -5 -1 3 3 1 -1 0 -1 -1 -1 0 0 0 1]

[14 -4 2 0 -1 -1 -1 2 2 0 -1 -1 1 0 0]

[14 -6 2 -2 2 0 2 -1 0 0 0 -1 -1 1 0]

[ 6 -4 2 0 3 -1 -1 0 -2 0 1 1 1 0 -1]

[ 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1]
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4 Closing Remarks

This material is deep, and there are lots of other remarkable results. For example, we did not discuss the
Murnaghan-Nakayama Rule, which is a method of computing the values of the irreducible character χλ on
a given conjugacy class. It is very combinatorial in nature and uses objects called “skew hooks”. Another
interesting result is the Littlewood-Richardson rule, which gives a combinatorial formula for computing
structure constants of Λ in the Schur functions basis. That is, it gives the coefficients of the product sµsν
in terms of the Schur basis:

sµsν =
∑
λ

LRλµνsλ

where the LRλµν are the Littlewood-Richardson coefficients. Another interesting set of coefficients are the
Kronecker coefficients. These are the coefficients in the decomposition of the tensor product:

Sµ ⊗ Sν =
∑
λ

GλµνSλ.

where Sλ is the irreducible CSn module corresponding to λ, usually referred to in the above notation as
a Specht module. It is surprising that even today, 100+ years in the future, an efficient algorithm for
computing the Kronecker coefficients is unknown. For more on these topics, see [Sag01].
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