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Neurons in the brain face the challenge of representing sensory stimuli in a way that

accurately encodes the features of these stimuli while minimizing the effects of noise. This

thesis will use the concept of mutual information from information theory, which quantifies

the amount of information one variable can tell us about another and vice versa, to bet-

ter understand neural coding in the auditory cortex. Previous research has been done in

maximizing mutual information to better understand neural behavior patterns in the visual

cortex, with limited auditory findings. We perform numerical optimization in Python to

maximize information that a population of neurons contains about an auditory stimulus

within the framework of information theory. This is done by first finding the optimal width

and location of tuning curves that characterize neural response to one dimensional stimuli

(sound frequency), then updating the optimization algorithm to fit two-dimensional stimuli

(sound frequency and intensity). By testing the algorithm with a set of natural sound data,

our computations show that in the latter case, optimal stimulus information is represented

by a specific homogeneous population with similar response properties. Our findings provide

a method to better understand neural representation in the auditory cortex, specifically, the

relationship between neural response and natural sound stimuli.
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1 Introduction and Background

One phenomenon in the brain many researchers are interested in understanding is neu-

rons’ ability to accurately encode information about the world. This proves to be difficult

as neurons are noisy, meaning that when the same stimulus is presented, the neurons do not

produce the same response each time. A goal in neuroscience, specifically in the study of

how the brain represents sensory information, is to be able to construct models that best

explain neural response to sensory stimuli while representing the relationship between the

two.

This research is in theoretical and computational neuroscience, which means there will

not be elements commonly seen in scientific research, such as conducting experiments, pro-

ducing the data, and analyzing the data to reach a conclusion. In this thesis, we will use

theories, mathematical concepts, formulas, and computer programming to better under-

stand phenomena that have been observed previously in experiments by other researchers.

In particular, we will focus on the mathematical description of tuning curves in auditory cor-

tex, where a tuning curve characterizes a neuron’s response to different stimuli. The below

sections provide important background information and motivation for our study of the au-

ditory cortex, for our research method of mutual information maximization, for our analysis

of neural response represented by tuning curves, which help us to answer this work’s main

research question: how auditory stimuli information is optimally represented in the brain.

1.1 Auditory Cortex

Definition (Auditory Cortex). The auditory cortex is a network of areas in the part of the brain that

receives inputs from the subcortical auditory pathways in the brainstem and thalamus. Through an

elaborate network of intrinsic and extrinsic connections, the auditory cortex is thought to bring

about the conscious perception of sound and provide a basis for the comprehension and production

of meaningful utterances[8].



There has been much research done in understanding how auditory signals undergo the

chain of processing that begins at the ear, through a series of complex subcortical brain

regions, then ultimately reaches the auditory cortex[10]; however, the specifics of how neurons

in the auditory cortex respond to sound stimuli, specifically natural sounds, is far from

understood. This is because of the unique organization of the Auditory cortex— with a longer

subcortical pathway between the peripheral receptors compared with other sensory cortices.

This suggests that the auditory system may implement different strategies in contrast to

other cortices in order to extract behaviorally relevant information from an environment

of natural stimuli [21]. In addition, it has been shown that, as opposed to other cortices,

auditory neurons have the property of high complexity in their selectivity to sound features.

This is crucial when trying to understand neural response to natural sounds. Therefore,

analyzing auditory cortical processing is an important step in understanding many overall

brain functions such as decision making and learning [10].

Why are we studying neural responses to natural sound stimuli? This is because the

structure of natural sounds consists of various and complex temporal patterns of acoustic

energy and sound levels extending over a wide range of frequency bands [14]. Therefore,

natural sound stimuli are interesting because they are rich and complex in important ways

that simple stimuli traditionally used in laboratory studies are not. Since laboratory stimuli

are not representative of such complexities encoded in natural stimuli, we are interested in

using natural sounds in order to produce more biologically plausible results, meaning how

sounds in the real world affect neural response in the auditory cortex. Moreover, studies

in the visual cortex, a different brain region, have shown that models derived from natural

stimuli are the most robust at predicting responses to other broadband stimulus ensembles

that were not used in their estimation and also provide good predictions of tuning curves

[18]. This is likely to be applicable to the auditory cortex as well.

In pursuit of finding strategies to represent how the auditory cortex encodes information,

researchers have come up with many encoding strategies. One approach is by using the
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spectrotemporal receptive field (STRF)[10]. The STRF is a computational tool for charac-

terizing the responses of auditory neurons. Most widely used as part of a linear-nonlinear

(LN) model, the STRF model is reliable as it chooses random structured stimuli with rel-

atively small amounts of data. Although this method provides a set of tools to represent

a single neuron or a population of neurons and describe neural responses, STRFs do not

accurately capture the full complexity of the behavior of auditory neurons [19]; this means

the model results display too much discrepancy between synthetic/laboratory stimuli and

natural sounds. Additionally, researchers have seen that neurons in the auditory cortex are

classically thought to primarily encode auditory frequency [20]. Although most neurons are

responsive to a singular frequency, a portion do respond to multiple frequencies, and research

has shown that the relationship between these frequencies is harmonic [20]. Harmonic tem-

plate neurons [5] have an important role in processing sounds with harmonic structures,

especially those seen in nature. Responses of these neurons show nonlinear facilitation to

harmonic complex sounds over inharmonic sounds and selectivity for particular harmonic

structures [5]. The existence of these harmonic template neurons further suggests there is a

complex harmonic processing organization in the auditory cortex[20]; however, it is unclear

of exactly where this stage of processing occurs [5]. Neither model fully captures all of the

ways that neurons respond to natural-sound stimuli. Therefore, it is important for us to

construct a model that can optimally represent natural auditory stimuli.

1.2 Tuning Curves

Definition (Tuning curve). A tuning curve characterizes the response of a neuron. A simple way

of representing this is to find the average firing rate r, which is the number of action potentials fired

over (in theory, an infinite number of) trials and divide by the trial duration. The average firing rate

can be written as a function, r = f(s), where s is a stimulus parameter (e.g. sound frequency), is

called the neural response tuning curve [4].

The above definition is saying that neurons communicate with other neurons by sending
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brief electro-chemical pulses known as action potentials or spikes to their neighbors. The

number of spikes generated in a given period of time is thought to be the means by which

neurons encode information about the world. Tuning curves describe a neuron’s response

to a stimulus in spikes per second. A set of tuning curves can define a neural code for a

population of neurons, which can be understood as the relationship between responses and

sensory neurons to sensory stimuli such as the frequency of an auditory tone. As discussed

by Kriegeskorte [12], a “tuned” neuron may selectively respond to stimuli within a particular

band of some stimulus variable, such as frequency or intensity, and the tuning curves are a

quantitative measure of neural responses as a function of a stimulus variable. An example

of such 1D tuning curve can be seen in Figure 1

Figure 1: Sample tuning curve (blue) shows mean spikes per second (firing rate) as a function of the stimulus parame-
ter. The shaded gray region illustrates the variability in firing rate upon the administration of repeated, identical trials,
also known as noise.[11]

A phenomenon that inspired this project is the paper by Sadagopan and Wang [16],

in which the authors investigated neural response characteristics in the primary auditory

cortex region of awake marmosets. In the Sadagopan and Wang study, two different types of

tuning representations were observed: “V-Shaped” and “O-Shaped” Tuning Curves, as seen

in Figure 2 [16].

Typically, a neuron’s firing rate response increases as sound intensity level increases

until saturation. This is called a monotonic rate level function. Conversely, when neurons
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exhibit a maximum response rate followed by a decrease as sound level increases, this is a

nonmonotonic rate level function. Wang and Sadagopan found that neurons with “V” and

“I”-shaped tuning curves span across a higher frequency range as sound level increases. This

covariance makes it difficult to predict frequency and sound level simply based on firing

rate. On the other hand, “O”-shaped tuning curves spanning across a certain frequency

range maintain their width at different sound levels, which makes it easy to parse frequency

and sound level based on neural responses. A neuron with “O”-shaped turning curves is

a non-monotonic rate level function. The idea of modeling frequency tuning in respect to

sound level (intensities) is one of the main goals of this project. The hypothesis that this

thesis investigates is that optimal stimulus information is represented by a mixed population

of these “O”-shaped and “V”-shaped neurons that respond in qualitatively different ways

to auditory stimulus features, and not a homogeneous distribution of either all “O”-shaped

or all “V”-shaped neurons. We came to this hypothesis because of neural heterogeneity [9]:

only a small fraction of neurons in a given population carry significant sensory information

in a specific context. Therefore we suspect that optimal tuning occurs with a combination

of “V” and “O”-shaped tuning curves.

Figure 2: ”O”(bottom) and ”V”(top) shaped tuning curves, Each shape denotes the combination of frequency and
sound level that causes a particular neuron to respond with an increased firing rate [16]
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1.3 Information Theory

Definition (Information Theory). Shannon’s information theory is the mathematical treatment of

the concepts, parameters and rules governing the transmission of messages through communication

systems [13]. It is a means of quantifying information, choice and uncertainty. Additionally, it is a

methodology to develop efficient coding and communication of data across noisy channels [3].

Information theory was first introduced to the world by Claude Shannon with his semi-

nal paper “A mathematical theory of communication [17]”. As Dayan and Abbott [4] state,

a main motivation for using information theory in neuroscience, is to answer the question

“How much does the neural response tell us about a stimulus?” The techniques of informa-

tion theory allow us to answer this question in a quantitative manner. More importantly,

information theory provides a framework that quantifies how a coding scheme or a commu-

nication channel conveys information and enables us to understand the relationships and

interactions between arbitrary multivariate random variables [3]. Besides information the-

ory, there have been many approaches and methodologies to analyzing and understanding

neural response behavior to capture specific features of neural activity such as connectivity,

effective dimensionality, encoding, and decoding [3].

Information theory has fruitfully been applied in many domains, including neuroscience,

statistics, and economics [3]. As mentioned by Borst [2], the rise in popularity of informa-

tion theory, can be attributed to the theory’s rigor, which enables us to precisely measure

information transfer by determining the exact probability distribution of outputs (in our

case, neural response) given any particular signal or input (in our case, auditory stimuli).

Moreover, because of its mathematical completeness, information theory has fundamental

theorems on the maximum information transferrable in a particular communication channel.

The key idea from information theory that will be used in this thesis is that information

encoded by one variable (the neural response) can be quantified by the reduction of its

entropy when we learn about the other variable (the auditory stimulus) [12]. The mutual

information(MI) between neural response and stimulus provides a means of quantifying this
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relationship. We explain mathematically in further details below what mutual information

is. In order to understand MI, we first introduce entropy.

Definition (Entropy). The entropy of a neural response with a firing rate represented by random

variable r and a probability density p(r) of observing that firing rate is a measure of our uncertainty

about the variable.[4]

There are three probability distributions associated with entropy and mutual information.

First, the probability of a firing rate happening as seen in the above definition. Then, we are

interested in the probability of a certain stimulus happening given a set of stimulus values,

also known as p(s). Lastly, we want to know the likelihood or probability of observing a

neural firing rate r given a stimulus s, denoted p(r|s)

In other words, entropy represented by H(r)[4] in the below equation, is how “surprised”

we are to be seeing that response rate r, then averaging over all possible responses.

H(r) = −
∫
p(r) log p(r)dr. (1)

Conditional entropy describes how “surprised” we are to be seeing that same firing rate r

given information about the stimulus parameter s. It is represented by [12]:

H(r|s) = −
∫
p(r|s) log p(r|s)drds. (2)

Finally, mutual information I(r, s) measures the amount of information one variable r can

tell us about the other s (and vice versa). We can first think of it as the reduction of entropy

in one variable after learning about the other variable, denoted by [4]:

I(r, s) = H(r)−H(r|s) = H(s)−H(s|r). (3)
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Using Equations 1 and 2, the final formula becomes [4]:

∫ ∫
p(r, s)log

p(r, s)

p(r)p(s)
drds. (4)

In the case where variables are discrete,

I(r, s) =
∑
s,r

p(s)p(r|s)log
(
p(r|s)
p(r)

)
. (5)

1.4 Putting Everything Together

This project revolves around this relationship between natural sound stimuli and neural

response, and maximizing their mutual information so that we can learn more about neural

response if there is a strong relationship between that and natural stimuli. How do we max-

imize MI? Note that p(s), the probability distribution of the stimuli (in our case frequency

and intensity), varies depending on the sound environment (hence the importance of using

natural sound stimuli). The logic of maximizing MI comes from minimizing uncertainty,

which means the model uses optimization techniques (further explained in later sections)

to increase the accuracy of predicting how a neuron responds given a set of stimuli. We

want to know through these mutual information computations whether neural response in

the auditory cortex matches the results of our optimizations. This idea sits on the basis of

the efficient coding hypothesis[1], which states that sensory systems such as the auditory

system maximizes the amount of information transferred from the environment to the brain.

Modeling a population of noisy neurons characterized by their tuning-curve responses to a

sensory variable, Ganguli and Simoncelli mathematically solved the information maximiza-

tion problem to derive optimal tuning curves as a function of prior probability distribution

p(s) of the sensory variable [7]. Assuming tuning curve widths vary inversely with cell den-

sity, the specific findings from this study include the following conclusion: for the optimal

population, the cell density is proportional to p(s), meaning that more cells with narrower
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tuning curves are allocated to represent stimuli with a higher prior probability density[7][6].

This is one of the results we will test with our optimization algorithm in Chapter 2.

We first observe how one-dimensional tuning curve characteristics such as width and

location change as a function of stimulus (frequency) probability by maximizing mutual

information. Then after quantifying this information, we investigate whether the distribution

of neural response tuning curves match our hypothesis: more neurons should be dedicated

to represent narrow tuning curves at stimuli with high probabilities, while wide tuning

curves should present to be more sparse at low probability stimuli. If the resulting tuning

curve distribution after MI maximization accurately encode p(s), then we can conclude our

algorithm indeed finds the optimal neuron representation in the auditory cortex.

Next, by updating functions to perform optimization on two-dimensional stimuli, we

attempt to explain the existence of both “V-shaped” and “O-shaped” tuning curves with

respect to sound frequency and intensity. Based on this idea, our hypothesis is that a combi-

nation of these particular shapes of tuning curves will maximize the mutual information with

natural stimuli, rather than one homogeneous type of neural response tuning curves. More-

over, another question we will be exploring is how the orientations of these two-dimensional

tuning curves contribute to the maximization of mutual information. The research outcome

is to predict what neural tuning curves should look like for different stimulus distributions

under the assumption that their role is to maximize MI between the stimulus and neural

response, then to look for correspondences with experimentally observed tuning-curve prop-

erties. A potential impact of this study is to embed and connect these research results to

how neural representations of stimuli change with learning, for example in mice trained to

respond to a particular auditory frequency. Further studies can be done to explore whether

more neurons should be devoted to representing stimuli that are important for performing a

learned behavior. In the next chapter, we investigate optimal one-dimensional tuning curves

and what they tell us about neural response to natural auditory stimuli in the auditory

cortex.
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2 Maximizing Mutual Information: one-dimensional stimuli

One of our research outcomes is to model neural tuning curves (neural response patterns)

and how their properties should differ for different prior stimulus distributions. Note all

computations and modeling were done in NumPy (Python library for scientific computing).

The data used in our computations and analysis is extracted from Montana State Library

digital collections — the Acoustic Atlas, ambient recordings[15]. This collection consists of

2,500 recordings of species and environments from throughout the Western United States.

For the purposes of our work, these ambient sounds constitute a representative ensemble of

natural stimuli.

The first part of our one-dimensional stimulus parameter optimization, sound frequency,

uses the first 150 seconds of one specific sound-track: Crickets at Beaver Dam Wash (Utah)

for the purpose of efficient modeling. The cricket sound track is then plotted with a spec-

trogram, which displays sound intensity at different frequencies at each moment in time, as

demonstrated in Figure 3. Next, we convert the spectrogram (with frequencies on the y-

axis) to a power spectral density graph seen in Figure 4 (with mel-frequencies on the x-axis),

which is the measure of a signal’s power content. The mel scale is a logarithmic frequency

conversion that allows auditory signals to be represented in a manner that conforms with

human auditory perception. The formula we use for this mel scale conversion is the following:

m = 2595 log10

(
1 +

f

700

)
, (6)

where f represents the list of original frequencies and m represents the converted frequencies.

By making our stimuli into a more biologically plausible representation, we are able to see

more clearly at which frequencies the stimuli display the most intensity (about 200Hz and

2200Hz in the cricket data).
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Figure 3: Spectrogram of natural crickets’ soundtrack (Montana State University library digital collections)
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Figure 4: Power Spectral Density diagram of Spectrogram (x-axis is mel scale of frequencies)
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To construct our model, given that the formula for mutual information (MI) is

I(r, s) =
∑
s,r

p(s)p(r|s) log

(
p(r|s)
p(r)

)
, (7)

we need to first find the stimulus probabilities p(s). Since most auditory stimuli are not

uniformly distributed across the frequencies, we utilized the method of binning discrete

frequencies to construct a non-uniform prior stimulus distribution. This allows us to generate

random stimuli according to the probabilities. The one-dimensional stimuli we use in our

equations below is a vector of 10, 000 random frequency stimuli s, based on the distribution

of p(s). Next, We need to find the probability distribution of neural firing rates (neural

response) p(r|s) given the stimulus distribution p(s), as well as the probability distribution

of firing rates p(r). It’s important to note that since we are interested in the behavior of a

population of neurons, we initialize our computations with 20 hypothetical neurons. To do

this, we first modeled tuning curves prior to optimization as a Gaussian distribution with

probability density function:

f(s) = c ∗ exp

(
−1

2

(
sss− µµµ
σσσ

)2
)
. (8)

Here, f(s) represents the average number of spikes per second that the 20 neurons fire in

response to stimuli s. c is a coefficient that gives the maximum firing rate of the neurons (we

set this constant to 10, meaning the maximum firing rate of the neuron cannot exceed 10).

σ = {σ1, ..., σ20} represents a vector of 20 tuning curve widths, s = {s1, ..., s10000} represents

random stimulus frequencies, and µ = {µ1, ..., µ20} represents a vector of 20 stimulus values

at which the responses is maximized, or as we like to call it — location of tuning curves. We

set our 20 neurons to have equal widths and locations evenly distributed across the stimuli

range, thereby each neuron has its own parameters µi and σi.

Then, the probability of a firing rate given a certain stimulus is modeled with a Poisson

distribution with mean given by Equation 8. The Poisson distribution is a probability

12



distribution over discrete events and is often used for modeling spike count distributions in

neuroscience [4]. The probability that the neuron emit r spikes in response to stimulus s is

then given by:

p(rrr|sss) =
f(sss)rrr exp(−f(sss))

rrr!
. (9)

Lastly, we get the probability function of firing rates:

p(rrr) =
1

n

∑
s1,...,sn

(p(rrr|sss)), (10)

by taking the mean of the p(r|s) functions over the stimulus parameter, obtaining the prob-

ability of a firing rate averaged over stimuli for each neuron.

After putting together the MI function with the above probability components, the total

MI that we are optimizing in Equation 7 includes a sum over our 20 neurons. We use

automatic differentiation in JAX NumPy, a Python library designed for high-performance

numerical computing especially in machine learning research, to take the partial derivatives

of the MI with respect to the parameters that we wish to optimize — in our case, the width

σi and location µi of each tuning curve i. In order to iteratively update the parameters to

maximize the MI, these partial derivatives are then used to perform gradient ascent.

Definition (Gradient Ascent). Given an objective function Q, and a set of parameters, θ, gradient-

based approaches involve estimating the direction in parameter space to move so as to improve

the model performance. This is achieved by estimating the derivative of the objective function

with respect to the parameters and iteratively updating the parameters along the gradient, leading

to an increase in the value of the objective function. Consequently, this requires that the objective

function for gradient based optimization is differentiable. Typically, estimating the true gradient

of the objective function is intractable. The gradient is often estimated using a random sample of

training data leading to stochastic estimates of the true gradient, hence called stochastic gradient-

ascent. [4]
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Using this idea, the formula we use for gradient ascent is:

θ ← θ + α
∂

∂θ
I(θ), (11)

where θ is the parameter vector we are trying to optimize, ∂
∂θ
I(θ) is the gradient of MI, and

α is the learning rate of the formula, determining the size of the step along the gradient.

This learning rate is crucial in our computations because if we choose it to be too small, our

MI might never converge; on the other hand, if we choose it to be too large, our MI might

oscillate back and forth without ever finding the maximum.

2.1 1D tuning curves – optimal widths

We choose to first run this algorithm for maximizing MI with respect to one parameter:

the widths of the tuning curves, represented by σi. Using gradient ascent, we find the

optimal widths of 20 tuning curves for the crickets dataset, showing that tuning curves tend

to be narrower around the frequencies that carry greater power spectral density (around

mel-scale values of 200 and 2200 in Figure 5). This matches the peaks of the power spectral

density diagram 4. Plotting MI at each step of the gradient ascent algorithm, we find a

steady increase and plateau of MI, as seen in Figure 6. This means we are indeed reaching

a maximum of MI with our computations.
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Figure 5: 1D Tuning curves for 20 neurons with optimized width
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Figure 6: MI at each step of gradient ascent optimization algorithm 1D width

2.2 1Dtuning curves – optimal widths and population density

Next, we use the gradient ascent algorithm to simultaneously optimize with respect to two

parameters: tuning curve widths and locations. The result of this optimization can be seen
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in Figure 7. As seen in the plot, neurons tuned to frequencies that have higher intensities

display a high density of narrow tuning curves; conversely, those tuned to lower intensities

are wider and sparser. Checking this result by plotting mutual information at each step

of the gradient ascent algorithm once more, we see in Figure 8 another steady increase to

plateau, meaning that we have successfully maximized MI. This approach of understanding

auditory stimuli matches the results of previous literature, specifically in the 2010 paper

by Ganguli and Simoncelli [6], where the authors found high density narrow tuning curves

corresponding to the frequencies with high probabilities of a heterogeneous prior stimulus

distribution.
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Figure 7: 1D Tuning curves for 20 neurons with optimized width and location
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Figure 8: MI at each step of gradient ascent optimization algorithm 1D width and location

2.3 1D tuning curves – combined natural sounds

To further understand one-dimensional tuning curves and to generalize the results to

explain neural response to a diverse ensemble of natural sound stimuli, we then automate

the process of importing 98 natural soundtracks using the web scraping method from the

same ambient sounds database [15], combining 100 seconds of each sound into one large

sound file. We reason the combined soundtrack better represents the behavior of natural

sound stimuli. Applying the same steps of the algorithm on this new set of stimuli, we first

find the prior probability distribution p(s) for the combined stimuli, using the same binning

method as above for the singular cricket sound-track. We discover the highest probabilities

occur around 400 − 800 mel scale as seen in Figure 9. With this information, we should

expect to see a dense population of narrow tuning curves around that frequency band. The

results as seen in Figure 10 show that this is mostly the case, with the narrowest tuning

curves somewhat densely populated around 400 − 800 mel scale on the x-axis representing

frequencies. Once again, to visually and quantitatively represent the mutual information
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maximization process as at each step of the gradient ascent, the plot in Figure 11 displays

the plateauing trajectory of MI as we reach almost 900 iterations.
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Figure 9: prior probability distribution of 98 combined natural soundtracks
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Figure 10: tuning curves of 98 combined natural sound stimuli
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Figure 11: MI at each step of gradient ascent optimization algorithm for 98 natural sounds

So far, the analysis of the 1D neural tuning curves with our algorithm of maximizing

MI utilizing stochastic gradient ascent have matched previous findings, specifically tuning

curves tend to be narrower and denser in regions where the stimulus probability is larger.

However, we have assumed up to this point that all tuning curves have the same functional

form, bell-shaped neural responses (in the 1D case). We reason that this is not the case:

optimal stimulus information is represented by multiple populations of neurons that respond

in qualitatively different ways to auditory stimulus features, rather than one homogeneous

population with similar response properties. Therefore, with highly suggestive evidence in

the 1D case that our algorithm is a robust model in aiding us to further understand neural

coding in the auditory cortex, considering heterogeneous populations of sensory neurons with

two-dimensional stimuli will be the subject of the next chapter.
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3 Maximizing Mutual Information: two-dimensional stimuli

While the algorithm from Chapter 2 successfully produces results that matched our

hypothesis and paints a rather clear picture of the behavior of one-dimensional tuning curves

in response to one stimulus parameter, we are still interested in understanding the existence of

“O”-shaped and “V”-shaped tuning curves [16], which are in response to two auditory stimuli

parameters: frequency and intensity (also known as sound level). Using the cricket sound-

track once again, we transform the frequencies into mel scale, and we also take the logarithm

of the intensity values to better accommodate the large dynamic range of sound intensities.

The prior stimulus probability distribution p(s) after binning is now two dimensional, with

a single probability assigned to each pair of values, (frequencyi, intensityj). To obtain this

probability distribution, we utilize the histogram function to quantify intensity values, so

that the sum of each frequency bin adds up to the marginal probability density function of

frequency values, while the whole probability matrix is normalized to add up to 1. After

constructing the prior probability distribution, we follow the steps similar to the 1D case,

and we can model the tuning function with the two-dimensional Gaussian function:

f(s1, ...sk) =
exp

(
−1

2
(sss− µµµ)TΣΣΣ−1(sss− µµµ)

)√
(2π)k|ΣΣΣ|

. (12)

3.1 2D O-shaped Tuning Curves

To model 2-dimensional O-shaped tuning curves, we represent the tuning widths σ1, σ2

in both directions in the following matrix Σ, where the widths of the tuning curves are

determined by the eigenvalues of the matrix, which only correspond to σ1 and σ2 if ρ is 0:

Σ =

σ2
1 ρ

ρ σ2
2

 , (13)

where ρ represents the orientation of the 2D tuning curves.
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Utilizing the fact that ρ
σ1σ2

has to be between −1 and 1 and the trigonometry function

tanh(γ) is bounded between −1 and 1, we can represent ρ in terms of parameters σ1, σ2, γ:

ρ = σ1σ2 tanh(γ). (14)

With the nice property that O-shaped tuning curves are symmetrical across either the x

or y-axis when ρ = 0, we insert this value of ρ in terms of σ1, σ2, γ. Now, we can derive

the Gaussian tuning function that represents our O-shaped tuning curves, where c is the

maximum amplitude of our tuning curves:

f(sss) = c∗exp

(
−1

2

(
(sss1 − µµµ1)

2

σσσ2
1(1− tanh(γγγ)2)

+
(sss2 − µµµ2)

2

σσσ2
2(1− tanh(γγγ)2)

+
(sss1 − µµµ1)(sss2 − µµµ2) tanh(γγγ)

σσσ1σσσ2(1− tanh(γγγ)2)

))
.

(15)

Interpreting this function in the context of our problem, the s1, s2s1, s2s1, s2 values are stimuli pairs

frequency s1 and intensity s2, and there are 5 parameters we are interested in optimizing

to investigate how each of them contribute to maximum MI: µ1, µ2µ1, µ2µ1, µ2 values are the centers of

each tuning curve, this should be 20 pairs of values on the frequency and intensity axes for

our 20 neurons; σ1, σ2σ1, σ2σ1, σ2 are vectors of 20 tuning widths; γγγ is a vector of 20 values determining

the orientation of our tuning curves. We want to try to understand what combination of

these parameters contribute to optimal 2-dimensional neural coding.

Initializing each parameter similar to the 1D case, we begin the optimization process with

equal widths in both directions, evenly distributed peak locations across both frequency and

intensity values, and a vector of 0s for the orientations of 20 neurons. To further optimize

our results, we perform the gradient ascent to maximize MI with respect to µ1, µ2, σ1, σ2, γµ1, µ2, σ1, σ2, γµ1, µ2, σ1, σ2, γ

on a Graphical Processing Unit (GPU) in the lab. As opposed to CPU on a laptop computer,

GPUs have more cores than CPU and hence when it comes to parallel computing of data,

GPUs perform exceptionally better than CPU. We are able to run more iterations at a faster

time this way, and obtain the 2D O-shaped tuning curves of 20 neurons, as seen in Figure 12.

As demonstrated by the plot of MI at each step of the gradient ascent algorithm in Figure
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14, we see as the number of iterations approach 20000, our MI increases fast then slow to

approach a constant value, suggesting we have found the maximum MI for this set of 20

neurons. More importantly, if we compare this result to the cricket soundtrack probability

distribution plot as seen in Figure 13, we are able to see that if a stimulus exhibit a high

probability at a high frequency, then it has a high probability of having high intensity (this

is based on the marginal probability density construction of our 2-dimensional p(s)). Here,

the O-units that span across the smallest frequency range and intensity range (top right

corner), and the highest density of O-units, are positioned at the relative high frequency and

high intensity values, which corresponds to the high probability region as determined by the

prior probability distribution p(s).
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Figure 12: 2D O shaped tuning curves
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Figure 13: 2D crickets natural stimuli probability distribution
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Figure 14: mutual information at each step of gradient ascent optimization algorithm for 2D O-shaped tuning curves
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One potential interpretation of the distribution of our O-shaped tuning curves is that the

optimal O shaped tuning curve should span across a small range of frequency and intensity

values, so that we can derive accurate and specific information at that stimuli pair. Ad-

ditionally, the orientations of the O-units appear to be most optimally represented aligned

with respect to the vertical and horizontal axes of the two-dimensional stimulus space. While

values of MI such as the ones in Figure 14 are difficult to interpret in absolute terms, we can

gain insight by comparing maximum MI values computed in different conditions. Thus, in

the following sections we want to compare the approximated maximal mutual information

value of 20 neurons with purely O-shaped tuning, purely V-shaped tuning, or a mix of both

shapes in order to determine how optimal stimulus information is represented in a population

of neurons.

3.2 2D V-shaped Tuning Curves

Next, we model “V”-shaped tuning curves with a similar 2D Gaussian function as before,

but now with a minor difference. This is because as the stimulus parameter in the y-

direction (sound intensity) increases, the V-shaped tuning curves span across a larger range

of frequency values; therefore, the tuning width in the x direction is dependent of the intensity

stimulus value. We represent this by writing σ1 as a function of s2: σ1(s2) = β1β1β1(s2s2s2 − ααα),

where ααα is a vector of threshold values for each neuron to constrain s2s2s2 from falling below

a certain value, and β1β1β1 is a multiplication parameter determining the widths of the tuning

curves. Then, putting all the necessary components into the tuning function, we get:

t = c ∗ exp

(
−1

2

(s1s1s1 − µxµxµx)2

(β1β1β1(s2s2s2 −ααα))2

)
tanh(β2β2β2(s2s2s2 −ααα)). (16)

Here, c once again controls the maximum firing rate of the tuning curve; s1, s2 are the

frequency and intensity of a stimulus randomly drawn from the prior probability distribution

and µxµxµx is the center of each of the 20 V-shaped tuning curve. Our goal will be to optimize
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the MI with respect to the parameters µxµxµx,β1β1β1,ααα, and β2β2β2.

The tanh in Equation 16 restricts the function to have a maximum firing rate, preventing

the MI from growing indefinitely with increasing neural firing rate. Adapting each probability

density function to reflect the V-shaped tuning curve behavior, We perform gradient ascent

as before to optimize the parameters in this new model. The result of the optimization can

be seen in Figure 15. As we can see, we derive our desired V-shaped tuning curves. It is

interesting to see the tuning widths to be so narrow across the frequency stimuli, and rather

evenly spaced locations spanning across the intensity stimuli space.

As we plot MI again at each step of the gradient ascent iterations, we find the plot

reaching a maximum of approximately 0.0013 (see Figure 16). This relatively small value

means that, given our relatively small number of neurons, we can tell little about a stimulus

given the neural response. Additionally, comparing this value to the maximum MI from the

O-shaped tuning curves, we can conclude that so far, O-shaped tuning is the model that

encodes more information about the natural stimuli. In the next section, we investigate the

case of a neural population with a heterogeneous combination of O and V-shaped tuning

curves, how this affects MI, and what the results tell us compared to homogeneous population

of O-shaped tuning curves or V-shaped tuning curves.
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Figure 15: 2D V shaped tuning curves
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Figure 16: mutual information at each step of gradient ascent optimization algorithm for 2D V-shaped tuning curves
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3.3 2D Mixed O/V-shaped Tuning Curves

To construct a tuning function that models a combination of “O” and “V”-shaped tuning

curves, we achieve this by combining 10 neurons with O-shaped tuning function 15 and 10

neurons with V-shaped tuning function 16. Now, we need to optimize our mutual information

with respect to 9 parameters: σ1σ1σ1, a vector of 10 tuning widths across the frequency axis; σ2σ2σ2,

a vector of 10 tuning widths across the intensity axis; µ1µ1µ1, peaks of 10 O-shaped tuning curves

on the frequency axis; µ2µ2µ2, peaks of 10 O-shaped tuning curves on the intensity axis; µ3µ3µ3, peaks

of 10 V-shaped tuning curves on the frequency axis; γγγ, a vector of 10 values determining the

orientation of O-tuning curves; β1β1β1, a vector of 10 values determining the width of V-tuning

curves; β2β2β2, a vector of 10 multiplication factors for V-shape tuning curves; ααα, a vector of 10

intensity threshold values for V-shaped tuning curves. We proceed to update all functions in

the algorithm once more to analyze the mixed tuning curve distribution and MI maximization

with respect to these parameters. As plotted in Figure 17, we see a distribution of O-shaped

and V-shaped tuning curves obtained after performing this optimization. The convergence

of MI during gradient ascent is shown in Figure 18. The final value of 0.005 is the second

greatest MI out of the three cases that we have considered, as visually represented in Figure

19, suggesting that our optimal neural population might not take form in a heterogeneous

population of neurons, but rather a homogeneous distribution of all O-shaped tuning curves.

Another aspect of understanding these two-dimensional tuning curves that has not been

investigated by previous literature is how the orientations of O-shaped tuning curves con-

tribute to maximization of mutual information, and what amount of auditory information is

encoded in the orientation parameter ρ from Equation 14. While previous experimental work

[16] appears to suggest that tuning curves tend to be aligned with respect to the vertical and

horizontal axes of the two-dimensional stimulus space, as shown in Figure 2, this does not

appear to have been carefully quantified. By adding this parameter ρ modeled in Equation

14 to the function characterizing O-shaped tuning curves in Equation 15, we find that the

optimal tuning curves orientation that maximizes MI is not necessarily at a 90 degree angle,
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Figure 17: 2D mixed shaped tuning curves
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Figure 18: mutual information at each step of gradient ascent algorithm for 2D mixed shaped tuning curves
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Figure 19: mutual information comparison for each of the three neural representations we considered

under the condition of a heterogeneous population of qualitatively different tuning curves.

As we see in our 2D plot in Figure 17, the optimized tuning curves in many cases display

a tilted angle. Precise quantification of the specific degree of the tilt and how it relates to

optimal neural response representation is an area that would require further research.
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4 Discussion

This thesis approaches a rather complex problem: understanding the neural response

representation of two-dimensional tuning curves, with a step-by-step analysis. Starting with

modeling 1D tuning curves with natural sound stimuli, we successfully find the optimal

tuning width and tuning density associated with 20 arbitrary neurons with a max firing

rate of 10. In the case of 1D neural response to natural sound stimuli, we find frequently

occurring stimuli are optimally represented by high densities of neurons with narrow tuning.

This result not only confirms the findings of previous studies [6], but it also provides the

modeling framework for optimizing neural representations for two-dimensional stimuli.

In the 2D case, motivated by experimental observations, we consider both O- and V-

shaped tuning curves in our model. Our mutual information maximization and gradient

ascent algorithm display two important findings: first, compared to V-shaped neurons and a

combination of V-shaped and O-shaped neurons, a distribution of entirely O-shaped tuning

appear to encode more information about natural stimuli. This can be seen from the MI

comparison results in Figure 19 after performing the optimization process for the three

cases we considered. Second, the nuance observation that the orientations of O-shaped

tuning curves in a population of neurons with mixed response properties are not optimally

represented by the aligned vertical or horizontal positions, but rather at a tilted angle, sheds

new light into further investigations on this topic.

The result of our optimizations of the two-dimensional stimuli did not match our hy-

pothesis; therefore, we propose two possible reasons for this outcome: first, we should more

carefully update our models and repeat experiments to investigate the result of our optimal

tuning curves. Second, the auditory cortex does not actually employ mutual information

maximization technique to optimally represent natural sound stimuli. Nevertheless, the

methods and results of this research project help us better understand neural representation

in the auditory cortex. This is because our method produced satisfactory results in the

one-dimensional case, as well as the possible conclusion that O-shaped tuning curves truly
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serve as the optimal two-dimensional stimulus representation. This is important to further

research in auditory neuroscience research, as a faithful representation of auditory stimuli in

the auditory cortex is an essential first step in auditory processing, especially when trying

to understand the behavior of a large population of neurons.

We recognize the limitations of these results in addition to the discrepancy between our

second hypothesis and result, and we propose possible solutions. First, a larger data collec-

tion and more fine-tuned sound stimuli selection might increase the accuracy of the results.

Selecting 200s of a random natural sound from the Montana State University database as

stimuli is a good method for the time being; however, it does not account for times where

there are little to non-existent sound activity; furthermore, a larger quantity of data would

be even more representative of the natural sound environment, for both the 1D and 2D

cases. Next, modeling more than the arbitrary 20 neurons we utilized in our computations,

and investigating the robustness of our optimizations by repeating each maximization many

times to make sure that the algorithm finds similar solutions each time, are both strategies

we can implement to improve the results.

An immediate future direction of this research project is to better quantify the orienta-

tion parameter as well as any additional factors that impact neural response, in addition to

optimizing the Python code that contains the algorithm to fit larger datasets. Furthermore,

it will be interesting to apply our algorithm to explore how neural representations of stimuli

change with learning, for example in mice trained to respond to a particular auditory fre-

quency. One potential hypothesis is that more neurons should be devoted to representing

stimuli that are important for performing a learned behavior. The outcome of this line of

future work is to be able to predict what neural tuning curves should look like and how

they should differ for different stimuli before and after learning, which would be an excit-

ing connection to not only the field of neuroscience, but also other areas of studies such

as linguistics and education. For example, in understanding the role of active and passive

language learning.
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